M1.
 (a)
 (i)

$$-\log[H]$$

or $\log[I/[H]$
penalise ()
 1

 (ii)
 $[H] = 0.56$
mark for the answer; allow 2dp or more
 1

 $[H,SO,] = \frac{1}{2} \times 0.56 = 0.28$
 1

 (b)
 (i)
 CH,COOH + NaOH \rightarrow CH,COONa + H,O

 OR
 $CH,COOH + OH \rightarrow CH,COO + H,O$

 (ii)
 mol acid = $(25.0 \times 10^{-9}) \times 0.41 = 1.025 \times 10^{-2} \text{ or } 1.03 \times 10^{-2}$

 (iii)
 mol acid = $(25.0 \times 10^{-9}) \times 0.41 = 1.025 \times 10^{-2} \text{ or } 1.03 \times 10^{-2}$

 (iii)
 mol acid = $(25.0 \times 10^{-9}) \times 0.41 = 1.025 \times 10^{-2} \text{ or } 1.03 \times 10^{-2}$

 (iii)
 mol acid = $(25.0 \times 10^{-9}) \times 0.41 = 1.025 \times 10^{-2} \text{ or } 1.03 \times 10^{-2}$

 (iii)
 mol acid = $(25.0 \times 10^{-9}) \times 0.41 = 1.025 \times 10^{-2} \text{ or } 1.03 \times 10^{-2}$

 (iii)
 mol acid = $(25.0 \times 10^{-9}) \times 0.41 = 1.025 \times 10^{-2} \text{ or } 1.03 \times 10^{-2}$

 Image: the state of the state

(c) (i)
$$K_{a} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]}$$

allow molecular formulae or minor slip in formulae penalise () allow H₃O^{*} not allow HA etc

(ii) $K_a = \frac{[H^+]^2}{[CH_3COOH]}$ or with numbers

allow HA etc here This can be scored in part (c)(i) but doesn't score there. 1

1

1

1

1

1

1

$$[H^{+}] = (\sqrt{(1.74 \times 10^{-5} \times 0.410)} = \sqrt{(7.13 \times 10^{-6})} = 2.67 \times 10^{-6})$$

mark for 2.67×10^{-3} or 2.7×10^{-3} either gives 2.57

pH mark conseq on their [H⁺] so 5.15 gets 2 marks where square root not taken

(iii) **M1** mol OH⁻ = $(10.0 \times 10^{-3}) \times 0.10 = 1.0 \times 10^{-3}$ If no subtraction or other wrong chemistry the max score is 3 for M1, M2 and M4

M2 orig mol HA = $(25.0 \times 10^{-3}) \times 0.41 = 0.01025$

or 1.025×10^{-2} or 1.03×10^{-2}

M3 mol <u>HA</u> in buffer = orig mol HA – mol OH⁻

= 0.00925 or 0.0093 If A- is wrong, max 3 for M1, M2 and M3 or use of pH = pKa – log [HA]/[A-]

M4 mol A⁻ in buffer = mol OH⁻ = 1.0 × 10⁻³ Mark is for insertion of correct numbers in correct expression for [H⁺]

$$\mathbf{M5} \ [\text{H}^{-1}] = \begin{pmatrix} \frac{K_a \times [\text{CH}_3\text{COOH}]}{[\text{CH}_3\text{COO}^{-1}]} = \end{pmatrix}$$
$$\frac{(1.74 \times 10^{-5})(0.00925)}{0.0010} \text{ or } \frac{(1.74 \times 10^{-5})(0.00930)}{0.0010}$$
$$(= 1.61 \times 10^{-4} \text{ or } 1.62 \times 10^{-4})$$

M6 pH = 3.79 can give six ticks for 3.79 *if* [HA]/[A⁻] upside down lose M5 & M6

> If wrong method e.g. $[H^*]^2/[HA]$ max 3 for M1, M2 and M3 Some may calculate concentrations [HA] = 0.264 and $[A^-] = 0.0286$ and rounding this to 0.029 gives pH = 3.80 (which is OK)

NB Unlike (c)(ii), this pH mark is NOT awarded conseq to their [H⁺] unless following AE

BEWARE: using 0.01025 wrongly instead of 0.00925 gives pH = 3.75 (this gets 3 for M1, M2 & M4)

1

1

1

M2. (a) -log [H⁺] ecf if [] wrong and already penalised

4.57 × 10^{-₃}

allow 4.6 × 10⁻³ ignore units 1

1

(b) (i)
$$K_{a} = \frac{[H^{+}][X^{+}]}{[HX]}$$
 allow HA etc
 $\int \frac{[H^{+}]^{2}}{[HX]}$ but mark on
If expression wrong allow conseq units in (ii)
but no other marks in (ii)

1

(ii)
$$\frac{[H^{+}]^{2}}{[HX]} = \frac{(4 \cdot 57 \times 10^{-3})^{2}}{[0 \cdot 150]}$$
If use 4.6×10^{-3}

$$K_{a} = 1.4(1) \times 10^{-4} \text{ and } pKa = 3.85$$

$$= 1.39 \times 10^{-4}$$
allow $1.39 - 1.41 \times 10^{-4} \text{ mol } dm^{-3}$
(iii) $pK_{a} = 3.86$
Penalise dp of final answer < or > 2 in pH once in paper 1

(c) (i) $\frac{30}{1000} \times 0.480 = 0.0144 \text{ or } 1.4(4) \times 10^{-2}$ Mark is for answer (M1)

1

(ii) $\frac{18}{1000} \times 0.350 = 0.0063 \text{ or } 6.3 \times 10^{-3}$ Mark is for answer (M2)

(iii) 0.0144 - 2(0.0063) = 1.80 × 10⁻³
 M3 is for (i) - 2(ii)
 If x 2 missed, CE i.e. lose M3 and the next mark gained

1

1

(iv) $1.80 \times 10^{-3} \times \frac{1000}{48} = 0.0375 (0.038)$ M4 is for answer

If vol is not 48×10^{-3} (unless AE) lose M4 and next mark gained If multiply by 48 - this is AE - i.e. lose only M4

(v)
$$10^{-14}/0.0375$$
 $(10^{-14}/0.038)$
 $M5 \text{ for } K_*/[OH]$
1
(= 2.66 × 10⁻¹³) (= 2.63 × 10⁻¹³)
or pOH
or pOH = 1.426 (or pOH = 1.420)
If no attempt to use K_* or pOH lose both M5 and M6
1
pH = 12.57 (12.58) M6
Allow M6 conseq on AE in M5 if method OK
1

1

1

M3.		(a)	Concentration of acid:	$m_1v_1 = m_2v_2$ hence $25 \times m_1 = 18.2 \times 0.150$						
		OR								
		moles NaOH = 2.73 ×10⁻₃;								
	m₁ = 18.2 × 0.150/25= 0.109;									
	(b)	(i)	K₅=[H⁺][A⁻]/[HA] n	ot	$K_{a} = [H^{+}]^{2} / [HA];$	1				
		(ii)	pK _a = –logK _a ;			1				
						T				

hence
$$K_a = [H^+] [A^-] / [HA] = [H^+]$$

and $-\log K_a = -\log [H^+];$

(c)	ratio	o [A-] : [HA] remains constant;	1						
	hen	hence as $[H^*] = K_a [HA] / [A^-];$ $[H^*]$ remains constant;							
(d)	(i)	pH of 0.250 mol dm- 3 HCl = 0.60 and pH of 0.150 mol dm- 3 HCl = 0.82; pH change = 0.22;	1 1						
	(ii) moles HCl = $30 \times 0.250 \times 10^{-3} = v \times 0.150 \times 10^{-3} = 7.50 \times 10^{-3}$ OR $v = 30 \times 0.250 \times 10^{-3} / 0.150 \times 10^{-3} = 50;$ water added = $50 - 30 = 20$ cm ³ ;								

M4.	(a)	(i)	B;	1
		C;		1
		A;		1
	(ii)	cres	olphthalein	
		OR		
		thym	nolphthalein;	1

(ii)
$$[H^+] = 1.259 \times 10^{-12}$$
 (or 1.26 or 1.3)

OR

1

$$[OH^{-}] = \frac{10^{-14}}{1.258 \times 10^{-12}}$$
OR
= 2.10;
1

= 7.9(4) × 10⁻³;
(if [H⁺] is wrong allow 1 for [OH] =
$$K_w/[H^+]$$
 or as numbers)

(c) (i)
$$K_s = [H]^{3}/[CH_sCH_sCOOH]$$

 OR
 $[H+]^{3}/[HA]$
 OR
 $[H'] = [A'] etc;$
 $[H'] = \sqrt{1.35 \times 10^{-5} \times 0.117}$ or expression without numbers;
 1
 $= 1.257 \times 10^{-3}$
 $pH = 2.9\underline{0};$
1
(iii) $K_s = [H']$
 OR
 $pK_s = pH;$
 $pH = 4.8\underline{7};$
 1

(penalise 1dp once)

[13]

1