M1. (a)	(i)	G
wii.(a)	(1)	G

-			1
	(ii)	F	1
	(iii)	н	1
(b)	(i)	cresol purple	1
	(ii)	yellow to red both colours needed and must be in this order	
	(iii)	yellow or pale yellow	1
		Not allow any other colour with yellow	1

M2. (a)	С		1	l
	А		1	l
	D		1	L
(b)	(i)	Bromocresol green Allow wrong spellings	1	L
	(ii)	Purple to yellow Must have both colours: Purple start – yellow finish		

[5]

1

[6]

M3.(a) **Z**

(b)

Mark independently.

The idea that the solution contains both HA and A⁻ pH [HA] = [A⁻] *Accept solution half neutralised.*

 $pH = pK_a$ $Accept [H^*] = K_a$

M4.(a) Over time / after storage meter does not give accurate readings Do not allow 'to get an accurate reading' or 'reading drifts' on its own. Allow 'temperature variations affect readings'.

(b) Any **five** from:

Any **five** from: Ignore references to the use of the pipette, the filling of the burette and the calibration of the pH meter.

- Measure pH (of the acid)
- Add alkali in known small portions
 - Allow 1 2cm³.
- Stir mixture
- Measure pH (after each addition)
- Repeat until alkali in excess

Allow 27 – 50cm³.

Add in smaller increments near endpoint Allow 0.1 – 0.5cm³. 1

1

1

1

1

1

[5]

1

1

1

1

1

1

1

Because it can deliver variable volumes (b) The change in pH is gradual / not rapid at the end point An indicator would change colour over a range of volumes of sodium hydroxide Allow indicator would not change colour rapidly / with a few drops of NaOH [H⁺] = 10^{-pH} = 1.58 × 10⁻¹² (c) $K_{w} = [H^{+}] [OH^{-}]$ therefore $[OH^{-}] = K_{w} / [H^{+}]$ Therefore, $[OH^{-}] = 1 \times 10^{-14} / 1.58 \times 10^{-12} = 6.33 \times 10^{-3} \pmod{\text{dm}^{-3}}$ Allow 6.31–6.33 × 10⁻³ (mol dm⁻³)

(d) At this point, $[NH_3] = [H^+]$ = $[H^+]^2$ Therefore K_a $[NH_4^+]$

M5.(a)

Burette

1

$$[H^{+}] = 10^{-4.6} = 2.51 \times 10^{-5}$$

$$K_{a} = (2.51 \times 10^{-5})^{2} / 2 = 3.15 \times 10^{-10} \text{ (mol dm}^{-3}\text{)}$$

Allow 3.15 - 3.16 × 10⁻¹⁰ (mol dm⁻³)

1

1

1

1

1

1

[12]

(e) When $[NH_3] = [NH_4^+]$, $K_a = [H^+]$ therefore $-\log K_a = -\log [H^+]$ Answer using alternative value

Therefore pH =
$$-\log_{10}(3.15 \times 10^{-10}) = 9.50$$

 $M2 \ pH = -\log_{10}(4.75 \times 10^{-9}) = 8.32$
Allow consequential marking based on answer from part (d)

M6.(a) Correct orientation of graph (pH on *y*-axis)

Scale – plotted points cover at least half the grid and *y*-axis should start at pH 4

All points plotted correctly + / – one small square.

Curve of best fit drawn correctly

Allow some leniency here with a complex graph – it is important that the section between pH 8.5 and 9.7 is close to linear. Lose this mark if the line is pulled towards the anomaly at 3.0

	cm ³ . Lose this mark if first point at pH 5.1 is treated as an anomaly. Do not accept doubled lines but allow some slight discontinuity where the curve changes direction.	1
(b)	11.6-11.9 (cm³) only Do not mark consequentially to student's graph.	1
(c)	pK _a = value of pH related to part (b) M1 Mark consequentially on student's graph – ideally 9.0-9.1 Do not penalise precision of answer.	1
	K _a = 10 ^{-pKa} M2 Ideally 1.0 × 10 ⁻⁹ to 7.9 × 10 ⁻¹⁰ Ignore precision of answer but lose M2 for 1 significant figure here.	1

(d) pH 8.7

Ineffective stirring / swirling of the mixture Both points needed for this mark. Do not allow pH 5.1 Do not allow 'overshooting (at 3 cm³ addition)'.

(e) Take more pH readings around the end-point / add smaller volumes of NaOH near the end-point

Do not allow 'use a more accurate / reliable pH meter / probe'. Do not allow the use of a thermostatted mixture.

[9]

1

1