- Q1. Indicators and pH curves can be used to determine the end point in a titration.
 - (a) The pH curves labelled **J**, **K**, **L** and **M** for combinations of different acids and bases are shown below. All solutions have a concentration of 0.1 mol dm⁻³.

L

- (ii) A table of acid–base indicators and the pH ranges over which they change colour is shown below.

Indicator	pH range
Thymol blue	1.2 – 2.8

Bromophenol blue	3.0 - 4.6	
Methyl red	4.2 - 6.3	
Cresolphthalein	8.2 - 9.8	
Thymolphthalein	9.3 – 10.5	

Select from the list above an indicator which could be used in the titration which produces curve **J** but not in the titration which produces curve **K**.

(b) The acid dissociation constant, K_a , for the weak acid, ethanoic acid, has a value of 1.74×10^{-5} mol dm⁻³ at 25 °C.

$$K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$$

- (i) Write an expression for the term pH.
- (ii) Calculate the pH of a 0.15 mol dm⁻³ solution of ethanoic acid. Give your answer to 2 decimal places.

.....

(Total 8 marks)

12.		A sample of hydrochloric acid has a pH of 2.34 ite an expression for pH and calculate the concentration of this acid.	
		ncentration	
			(
(k	b) A (0.150 mol dm⁻³ solution of a weak acid, HX, also has a pH of 2.34	
	(i)	Write an expression for the acid dissociation constant, $K_{\!\scriptscriptstyle B}$, for the acid HX.	
	(ii)	Calculate the value of K_a for this acid and state its units.	
	()	Calculation	
		Units	
	(iii)	Calculate the value of p $K_{\!\scriptscriptstyle 0}$ for the acid HX. Give your answer to two decimal places.	
			(
(0		30.0 cm³ sample of a 0.480 mol dm³ solution of potassium hydroxide was partially utralised by the addition of 18.0 cm³ of a 0.350 mol dm³ solution of sulphuric acid.	
	(i)	Calculate the initial number of moles of potassium hydroxide.	

(ii)	Calculate the number of moles of sulphuric acid added.
(iii)	Calculate the number of moles of potassium hydroxide remaining in excess in the solution formed.
(iv)	Calculate the concentration of hydroxide ions in the solution formed.
(v)	Hence calculate the pH of the solution formed. Give your answer to two
	decimal places.
	(6) (Total 13 marks)

- **Q3.** The value of the acid dissociation constant, K_s , for the weak acid HA, at 298 K, is 1.45×10^{-4} mol dm⁻³.
 - (a) Write an expression for the term K_a for the weak acid HA.

			(1)
(b)	Cald	culate the pH of a 0.250 mol dm³ solution of HA at 298 K.	
			(4)
(c)		ixture of the acid HA and the sodium salt of this acid, NaA, can be used to are a buffer solution.	
	(i)	State and explain the effect on the pH of this buffer solution when a small amount of hydrochloric acid is added.	
	(ii)	The concentration of HA in a buffer solution is 0.250 mol dm $^{-3}$. Calculate the concentration of A $^{-}$ in this buffer solution when the pH is 3.59	
		(Total 11 m	(6) arks)

Q4. (a) Titration curves labelled **A**, **B**, **C** and **D** for combinations of different acids and bases are shown below. All solutions have a concentration of 0.1 mol dm⁻³.

- (ii) A table of acid–base indicators and the pH ranges over which they change colour is shown below.

Indicator	pH range
indicator	рптапде

Thymol blue	1.2 – 2.8		
Bromopheno	l blue 3.0 – 4.6		
Methyl red	4.2 – 6.3		
Cresolphthal	ein 8.2 – 9.8		
Thymolphtha	lein 9.3 – 10.5		
	Select from the table an indicator which could be used in the titration which produces curve A but not in the titration which produces curve B .	(4)	
(b) (i)	Write an expression for the term <i>pH</i> .		
(ii)	A solution of potassium hydroxide has a pH of 11.90 at 25°C. Calculate the concentration of potassium hydroxide in the solution.		
		(4)	
	e acid dissociation constant, K_a , for propanoic acid has the value of 5×10^{-5} mol dm $^{-3}$ at 25 °C.		
$K_a = \frac{[H^+]}{[C]}$	[CH₃ CH₂COO ⁻] :H₃CH₂COOH]		
In ea	ach of the calculations below, give your answer to 2 decimal places.		
(i)	Calculate the pH of a 0.117 mol dm ^{-₃} aqueous solution of propanoic acid.		

(ii) Calculate the pH of a mixture formed by adding 25 cm³ of a 0.117 mol dm³ aqueous solution of sodium propanoate to 25 cm³ of a 0.117 mol dm³ aqueous solution of propanoic acid.

(5) (Total 13 marks)

Q5. The pH curve shown below was obtained when a 0.150 mol dm⁻³ solution of sodium hydroxide was added to 25.0 cm³ of an aqueous solution of a weak monoprotic acid, HA.

Volume of 0.150 mol dm⁻³ NaOH added/cm³

(a) Use the information given to calculate the concentration of the acid.

(2)

(i)	Write an expression for the acid dissociation constant, $K_{\rm e}$, for HA.
(ii)	Write an expression for pK₃
(iii)	Using your answers to parts (b)(i) and (b)(ii), show that when sufficient sodium hydroxide has been added to neutralise half of the acid,
	pH of the solution = pK_a for the acid HA
solu [·]	tion.
(i)	Calculate the change in pH when 0.250 mol dm ⁻³ hydrochloric acid is diluted with water to produce 0.150 mol dm ⁻³ hydrochloric acid.

•••••	• • • •
(4)	
(4)	
(-)	
(Total 12 marks)	
(10tal 17 marks)	