M2 pH = 1.77 2 dp Allow M2 for correct pH calculation from theirwrong [H-] for this pH calculation only

(b) (i)
$$\kappa_{a} = \frac{\left[H^{+}\right]X^{-}}{\left[HX\right]^{2}} \qquad \text{Ignore} \qquad \kappa_{a} = \frac{\left[H^{+}\right]^{2}}{\left[HX\right]}$$
$$Penalize missing [] here and not elsewhere Allow HA instead of HX$$
(ii) M1 [H⁺] = 10^{-2.79} OR 1.6218... ×10⁻³ If [H⁺] wrong, can only score M2
$$\kappa_{a} = \frac{\left[H^{+}\right]^{2}}{\left[HX\right]} \qquad \text{OR} \qquad \frac{\left[1.62 \times 10^{-3}\right]^{2}}{\left[0.0850\right]}$$

M2

Allow HA instead of HX

1

1

1

1

1

M3 $K_a = 3.09 \times 10^{-5}$ 3sfs min (allow 3.10 × 10⁻⁵ if 1.6218 rounded to 1.622) Ignore units If [HX] used as (0.0850 -1.62 ×10-3) *this gives K*^{*a*} = 3.15 ×10^{-₅} (0.0016)²/0.085 = 3.01 ×10⁻⁵ scores 2 for AE 1

(c) **M1** mol OH⁻ (=
$$(38.2 \times 10^{-3}) \times 0.550$$
)

M2 Mol H⁺ (= $(25.0 \times 10^{-3}) \times 0.620$)

1

1

M3 excess mol OH⁻ =
$$5.5(1) \times 10^{-3}$$

Allow conseq for M1 – M2
If wrong method e.g. no subtraction or use of $\sqrt{}$
can only score max of M1, M2, M3 and M4.

M4 [OH⁻] = 5.51 × 10⁻³ × $\frac{10^3}{63.2}$ [= 0.08718 (0.0872)]

OR $[OH^-] = 5.5 \times 10^{-3} \times \frac{10^3}{63.2} = 0.0870(2)$ (M1 – M2) / vol in dm³ mark for dividing by volume (take use of 63.2 without 10⁻³ as AE so 9.94 scores 5) If no use or wrong use of vol lose M4 & M6 Can score M5 for showing (10⁻¹⁴/ their XS alkali)

M5 $[H^+] = \frac{10^{-14}}{0.08718} = 1.147 \times 10^{-13}$

$$OR \quad \frac{10^{-14}}{0.0870} = 1.149 \times 10^{-13}$$

1

1

M6 pH = 12.9(4) allow 3sf If vol missed score max 4 for 11.7(4) If acid– alkali reversed max 4 for pH = 1.06 Any excess acid – max 4

[12]

M2.	(a)	(i) - log[H [·]] penalise missing [] here and not elsewhere
	(ii)	[H [.]][OH [.]] Allow () brackets, but must have charges

$$[H^*] = 10^{-13.72} = 1.905 \times 10^{-14}$$

If wrong no further mark

$$K_{w}$$
 = 1.905 × 10⁻¹⁴ × 0.154 = = (2.93 – 2.94) × 10⁻¹⁵

1

1

1

1

1

1

1

(b) (i) Ka =
$$\frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$$

Must have charges and all brackets, allow () Acid/salt shown must be CH₃COOH not HA and correct formulae needed

$$K_{a} = \frac{[H^{+}]^{2}}{[CH_{3}COOH]}$$
Allow HA

$$([H^+]^2 = 1.75 \times 10^{-5} \times 0.154 = 2.695 \times 10^{-6} = 2.70 \times 10^{-6})$$

If $\sqrt{}$ shown but not done gets pH = 5.57 (scores 2)

$$[H^*] = 1.64 \times 10^{-3}$$

Allow mark for pH conseq to their [H+] here only

(c) (i) In pH values penalise fewer than 3 sig figs each time but allow more than 2 dp

For values above 10, allow 3sfs - do not insist on 2 dp

M1 Initially

mol OH⁻ = $(10 \times 10^{-3}) \times 0.154$ and

mol HA = $(20 \times 10^{-3}) \times 0.154$

or mol OH- = 1.54 \times 10-3 and mol HA = 3.08 \times 10-3

 $\mathbf{M2} [H^{\cdot}] = \mathbf{K}_{*} \frac{[CH_{3}COOH]}{[CH_{3}COOH^{-}]}$

or with numbers

Allow Henderson Hasselbach

$$pH = pK_s + \log \frac{[CH_3COO^-]}{[CH_3COOH]}$$

M3 mol ethanoic acid left = (mol ethanoate ions) = 1.54×10^{-3}

K_a = [H¹] or pH = pK_a scores M1, M2 and M3
1 If either mol acid in mixture or mol salt wrong
max 2 for M1 and M2
Any mention of [H¹]² - max 2 for M1 and M3

1

M4 pH (= - log 1.75 × 10⁻) = 4.76 or 4.757 *Not 4.75*

1

If no subtraction (so mol ethanoic acid in buffer = original mol) pH = 4.46 scores 2 for **M1** and **M2** If $[H+]^2$ used, pH = 3.02 scores 2 for **M1** and **M3**

(ii) In pH values penalise fewer than 3 sig figs each time but

allow more than 2 dp For values above 10, allow 3sfs - do not insist on 2 dp

M1 <u>XS mol KOH</u> (= $(20 \times 10^{-3}) \times 0.154$) = 3.08×10^{-3}

If no subtraction: max 1 for correct use of volume No subtraction and no use of volume scores zero If wrong subtraction or wrong moles Can only score **M2** and **M3** for process

M2 $[OH] = 3.08 \times 10^{-3} \times \frac{10^3}{60} = 0.0513(3)$ Mark for dividing their answer to **M1** by correct volume (method mark) If no volume or wrong volume or multiplied by volume, max 2 for **M1** and **M3** process

 $\frac{10^{-14}}{0.05133} = \frac{10^{-14}}{0.05133} = (1.948 \times 10^{-13} \text{ to } 1.95 \times 10^{-13})$ or pOH = 1.29 Mark for K_w divided by their answer to **M2** If pOH route, give one mark for 14 – pOH **M4** pH = 12.7(1) Allow 3sf but not 12.70 If no subtraction and no use of volume (pH = 11.79 scores zero) If no subtraction, max 1 for correct use of volume, (60cm³) (pH = 13.01 scores 1) If volume not used, pH = 11.49 (gets 2)

If multiplied by vol, pH = 10.27 (gets 2)

[16]

1

1

1

1

M3.(a) Idea that <u>over time / after storage</u> meter does not give accurate readings Do not accept 'to get an accurate reading' without further *qualification. Allow 'temperature variations affect reading'.*

(b)
$$\frac{[[Fe(H_2O)_5OH]^{2+}(aq)] [H^{+}(aq)]}{[[Fe(H_2O)_6]^{3+}(aq)]}$$

Allow without (aq) symbols. Need at least one set of square brackets around complex ions

(c)
$$pH = -log [H^+]$$

[H⁺] = 0.0240 Do not penalise precision of [H⁺] Correct answer scores M1 and M2.

 $K_a = (0.0240)^2 / 0.1 = 5.75 \times 10^{-3}$ or 5.76×10^{-3} Correct answer without working loses M1 and M2. Allow 7.58 ×10⁻³

Answer, even if incorrect, given to 3 sig figs

- (d) Oxygen (in the air) / O₂
 Ignore 'air' or 'the atmosphere' or 'chemicals in soil'.
 List principle.
- (e) 4.0-6.9

Do not penalise precision.

1

1

1

1

1

1

M4.		(a)	(i)	 log[H⁺] or log 1/[H⁺] penalise missing square brackets here only 	1
		(ii)	0.81	2dp required, no other answer allowed	1
		(iii)	M1	mol H ⁺ = 1.54×10^{-3} if wrong no further mark if 1.5×10^{-3} allow M1 but not M2 for 2.82	1
			M2	pH = 2.81 allow more than 2dp but not fewer	1
	(b)	M 1	[H⁺]	= 3.31 × 10-₃	1
		M2	K _a =	$\frac{[H^+][X^-]}{[HX]} \text{or } \frac{[H^+]^2}{[HX]}$ or using numbers do not penalise () or one or more missing []	1
		М3	[HX]	$= \frac{[H^+]^2}{K_{\star}} = \frac{(3.31 \times 10^{-3})^2}{4.83 \times 10^{-5}}$ allow conseq on their $[H^+]^2/(4.83 \times 10^{-5})$ (AE) if upside down, no further marks after M2	1
		Μ4	[HX]	= 0.227 allow 0.225 – 0.23	1
	(c)	M 1	extra	a/added OH- removed by reaction with H $^{\cdot}$ or the acid	1
		M2	corre	ect discussion of equn shift i.e. HX $\stackrel{\sim}{\longrightarrow}$ H $^{\cdot}$ + X $^{-}$ moves to right	1
		OR			

ratio $\frac{[HX]}{[X^-]}$ remains almost constant

(d) (i) **M1** mol HY =
$$(50 \times 10^{-3}) \times 0.428 = 0.0214$$

OR [Y] = .0236 ×
$$\frac{1000}{50}$$
 = 0.472
mark for answer

1

M2	[H⁺] = 1.35 × 10⁻₅ ×	0.0214 0.0236
OR	1.35 × 10⁵ = [H⁺] ×	0.0236 0.0214
OR	[H⁺] = 1.35 × 10⁻⁵ ×	0.428 0.472
OR	1.35 × 10⁵ = [H⁺] × must be numbers n If either HY value of M2 and M3	0.472 0.428 ot just rearrangement of Ka expression r Y-value wrong, (apart from AE -1) lose

- **M3** $[H^+] = 1.22 \times 10^{-5}$ mark for answer
- M4 pH = 4.91
 allow more than 2dp but not fewer
 allow M4 for correct pH calculation using their [H⁺] (this
 applies in (d)(i) only)

1

1

1

If Henderson Hasselbalch equation used:

M1 mol HY = $(50 \times 10^{-3}) \times 0.428 = 0.0214$

1000 = 0.472 $[Y] = .0236 \times$ OR mark for answer 1 M2 pKa = 4.87 1 $\log^{\left(\frac{0.0214}{0.0236}\right)} = -0.043$ М3 $\log^{\left(\frac{0.428}{0.472}\right)} = -0.043$ If either HY value or Y- value wrong, (apart from AE-1) lose M3 and M4 1 Μ4 pH = 4.87 - (-0.043) = 4.91allow more than 2dp but not fewer 1 Can score full marks for correct consequential use of their HY and Y⁻ values from d(i)

- M1 Mol HY after adding NaOH = $0.0214 5.0 \times 10^{-4} = 0.0209$ AE in subtraction loses just M1 If wrong initial mol HY (i.e. not conseq to part d(i)) or no subtraction or subtraction of wrong amount, lose M1 and M3
- **M2** Mol Y⁻ after adding NaOH = $0.0236 + 5.0 \times 10^{-4} = 0.0241$ AE in addition loses just M2 If wrong mol Y⁻ (i.e. not conseq to part d(i)) or no addition or addition of wrong amount lose M2 and next mark gained

1

1

1

M3 [H⁺] = $1.35 \times 10^{-5} \times \frac{0.0209}{0.0241}$ (= 1.17×10^{-5})

if convert to concentrations

if HY/Y- upside down, no further marks

(ii)

M4 pH = 4.93

allow more than 2dp but not fewer NOT allow M4 for correct pH calculation using their [H⁺] (this allowance applies in (d)(i) only)

	Can score full marks for correct consequential use of their HY and Y [_] values from d(i)	
M1	Mol HY after adding NaOH = $0.0214 - 5.0 \times 10^{-4} = 0.0209$ AE in subtraction loses just M1 If wrong initial mol HY (i.e. not conseq to part d(i)) or no subtraction or subtraction of wrong amount lose M1 and M3	1
M2	Mol Y- after adding NaOH = $0.0236 + 5.0 \times 10^{-4} = 0.0241$ AE in addition loses just M2 If wrong mol Y- (i.e. not conseq to part d(i)) or no addition or addition of wrong amount lose M2 and next mark gained	1
М3	$\log \left(\frac{0.0209}{0.0241}\right) = -0.062$ if HY/Y- upside down, no further marks	1
M4	pH = 4.87 – (– 0.062) = 4.93 allow more than 2dp but not fewer	1