Q1.In this question, give all values of pH to two decimal places.

Calculating the pH of aqueous solutions can involve the use of equilibrium constants such as K_{α} and K_{α}

 K_{w} is the ionic product of water. The value of K_{w} is 5.48 × 10⁻¹⁴ mol² dm⁻⁶ at 50 °C. (a) (i) Write an expression for pH. (1) (ii) Write an expression for K_{w} (1) Calculate the pH of pure water at 50 °C. (b) (i) (2) (ii) Suggest why this pure water is **not** acidic. (1) (iii) Calculate the pH of 0.140 mol dm⁻³ aqueous sodium hydroxide at 50 °C.

	(C)	sulfu	iric acid are added to 30.0 cm³ of 0.200 mol dm¬ aqueous potassium h 5 °C. Assume that the sulfuric acid is fully dissociated.	
			, and the second	
		•••••		
		•••••		
		•••••		
				(6)
				(Total 14 marks)
Q2.		In this	question, give all values of pH to 2 decimal places.	
	(a)	(i)	Write an expression for the term pH.	
				(4)
				(1)
		(ii)	Calculate the concentration, in mol dm $^{\!\scriptscriptstyle -\!\!\scriptscriptstyle 3}$, of an aqueous solution of su acid that has a pH of 0.25	ılfuric
				(2)
				(2)

(b)	A student carried out a titration by adding an aqueous solution of sodium hydroxide from a burette to an aqueous solution of ethanoic acid. The end-point was reached when 22.60 cm³ of the sodium hydroxide solution had been added to 25.00 cm³ of 0.410 mol dm⁻³ ethanoic acid.				
	(i)	Write an equation for the reaction between sodium hydroxide and ethanoic acid.			
			(1)		
	(ii)	Calculate the concentration, in mol dm⁻₃, of the sodium hydroxide solution used.			
			(2)		
	(iii)	A list of indicators is shown below.			
Indicat	or	pH range			
		pri range			
thymol	blue	1.2–2.8			
thymol		1.2–2.8			
-		1.2–2.8			
bromop	henol	1.2–2.8 blue 3.0–4.6			
bromop	henol	1.2–2.8 blue 3.0–4.6 5.0–8.0	(1)		
bromop	henol	1.2–2.8 blue 3.0–4.6 5.0–8.0 7.6–9.2	(1)		

	298 K, the value of the acid dissociation constant, K_s , for ethanoic acid in ueous solution is 1.74 × 10-5 mol dm-3		
(i)	Write an expression for the acid dissociation constant, $\mathcal{K}_{\!\scriptscriptstyle a}$, for ethanoic acid.		
(ii)	Calculate the pH of 0.410 mol dm⁻₃ ethanoic acid at this temperature.		
(iii)	Calculate the pH of the buffer solution formed when 10.00 cm³ of 0.100 mol		
(iii)	Calculate the pH of the buffer solution formed when 10.00 cm³ of 0.100 mol dm³ potassium hydroxide are added to 25.00 cm³ of 0.410 mol dm³ ethanoic		
(iii)	Calculate the pH of the buffer solution formed when 10.00 cm³ of 0.100 mol dm³ potassium hydroxide are added to 25.00 cm³ of 0.410 mol dm³ ethanoic acid.		
(iii)	Calculate the pH of the buffer solution formed when 10.00 cm³ of 0.100 mol dm⁻³ potassium hydroxide are added to 25.00 cm³ of 0.410 mol dm⁻³ ethanoic acid.		
(iii)	Calculate the pH of the buffer solution formed when 10.00 cm³ of 0.100 mol dm⁻³ potassium hydroxide are added to 25.00 cm³ of 0.410 mol dm⁻³ ethanoic acid.		
(iii)	Calculate the pH of the buffer solution formed when 10.00 cm³ of 0.100 mol dm⁻³ potassium hydroxide are added to 25.00 cm³ of 0.410 mol dm⁻³ ethanoic acid.		
(iii)	Calculate the pH of the buffer solution formed when 10.00 cm³ of 0.100 mol dm⁻³ potassium hydroxide are added to 25.00 cm³ of 0.410 mol dm⁻³ ethanoic acid.		
(iii)	Calculate the pH of the buffer solution formed when 10.00 cm³ of 0.100 mol dm⁻³ potassium hydroxide are added to 25.00 cm³ of 0.410 mol dm⁻³ ethanoic acid.		

Q3.In this question, give all pH values to 2 decimal places.				
	(a)	(i)	Write expressions for the ionic product of water, $K_{\!\scriptscriptstyle w}$, and for pH.	
			K _w =	
			pH =	
		(ii)	At 318 K, the value of K_w is 4.02×10^{-14} mol ² dm ⁻⁶ and hence the pH of pure water is 6.70	
			State why pure water is not acidic at 318 K.	
		(iii)	Calculate the number of moles of sodium hydroxide in 2.00 cm ³ of 0.500 mol	
		()	dm ^{-₃} aqueous sodium hydroxide.	
		(iv)	Use the value of K_w given above and your answer to part (a)(iii) to calculate the	
		(1V)	pH of the solution formed when 2.00 cm³ of 0.500 mol dm³ aqueous sodium hydroxide are added to 998 cm³ of pure water at 318 K.	
			Try at Oxide and deduct to 000 officer pare water at 010 ft.	

			(6)			
(b)	At 298 K, the acid dissociation constant, <i>K</i> ₅, for propanoic acid, CH₃CH₂COOH, has the value 1.35 × 10⁻⁵mol dm⁻³.					
	(i)	Write an expression for $K_{\!\scriptscriptstyle a}$ for propanoic acid.				
	(ii)	Calculate the pH of 0.125 mol dm ^{-₃} aqueous propanoic acid at 298 K.				
			(4)			
(c)	Sodium hydroxide reacts with propanoic acid as shown in the following equation.					
		NaOH + CH₃CH₂COOH → CH₃CH₂COONa + H₂O				
	A buffer solution is formed when sodium hydroxide is added to an excess of aqueous propanoic acid.					
	(i)	Calculate the number of moles of propanoic acid in 50.0 cm³ of 0.125 mol dm⁻³ aqueous propanoic acid.				

			moles of propanoic acid in the buffer solution formed when 2.00 cm ³ mol dm ⁻³ aqueous sodium hydroxide are added to 50.0 cm ³ of 0.125 raqueous propanoic acid.	of 0.500
		(iii)	Hence calculate the pH of this buffer solution at 298 K.	
				(6) (Total 16 marks)
Q4. U	se the	inforn	nation below to answer this question.	
	A sat	urated	solution of magnesium hydroxide, Mg(OH) ₂ , contains 0.1166 g of Mg f solution. In this solution the magnesium hydroxide is fully dissociate	
	× 10 ⁻⁴	mol d	of the following is the pH of a solution of magnesium hydroxide conta m ⁻³ of hydroxide ions at 298 K? 10 ⁻¹⁴ mol ² dm ⁻⁶ at 298 K)	ining 4.0
	Α	9.6		
	В	9.5		
	С	8.6		
	D	8.3		

(Total 1 mark)