Q1.Water dissociates slightly according to the equation:

$$H_2O(I) \implies H^+(aq) + OH^-(aq)$$

The ionic product of water, $K_{\!\scriptscriptstyle W}$, is given by the expression

$$K_{w} = [H^{+}][OH^{-}]$$

 $K_{\!\scriptscriptstyle W}$ varies with temperature as shown in the table.

Temperature / °C	<i>K</i> _w / mol² dm ^{−6}	
25	1.00 × 10 ⁻¹⁴	
50	5.48 × 10 ⁻¹⁴	

(a)	Explain why the expression for $K_{\rm w}$ does not include the concentration of water.	
		(0)
		(2)
(b)	Explain why the value of $K_{\!\scriptscriptstyle W}$ increases as the temperature increases.	

(2)

(c) Calculate the pH of pure water at 50 °C. Give your answer to 2 decimal places.

			. (3)
			(0)
	(d)	Calculate the pH of 0.12 mol dm ⁻³ aqueous NaOH at 50 °C. Give your answer to 2 decimal places.	
			. (3)
			(Total 10 marks)
Q2. T	his qu	uestion is about alkalis and carboxylic acids.	
	In thi	is question, all data are quoted at 25 °C.	
	(a)	Carboxylic acids are weak acids.	
		State the meaning of the term weak as applied to carboxylic acids.	
			. (4)
			(1)

(b)	Writ	e an equation for the reaction of propanoic acid with sodium carbonate.	
	•••••		(1)
(c)	The	culate the pH of a 0.0120 mol dm ⁻³ solution of calcium hydroxide. ionic product of water $K_w = 1.00 \times 10^{-14}$ mol ² dm ⁻⁶ . syour answer to 2 decimal places.	
	(Ext	ra space)	
			(3)
(d)		value of the acid dissociation constant K_a for benzenecarboxylic acid $_a$ COOH) is 6.31 × 10- a mol dm- a .	
	(i)	Write an expression for the acid dissociation constant K _a for benzenecarboxylic acid.	
			(1)
	(ii)	Calculate the pH of a 0.0120 mol dm ^{-₃} solution of benzenecarboxylic acid. Give your answer to 2 decimal places.	

	(Extra space)
(iii)	A buffer solution with a pH of 4.00 is made using benzenecarboxylic acid and sodium benzenecarboxylate.
	Calculate the mass of sodium benzenecarboxylate (M_r = 144.0) that should be dissolved in 1.00 dm ³ of a 0.0120 mol dm ⁻³ solution of benzenecarboxylic acid to produce a buffer solution with a pH of 4.00
	The value of the acid dissociation constant K₃ for benzenecarboxylic acid (C₅H₅COOH) is 6.31 × 10-⁵ mol dm⁻³.
	(Extra space)

(3)

	(e)	Two solutions, one with a pH of 4.00 and the other with a pH of 9.00, were left open to the air.	
		The pH of the pH 9.00 solution changed more than that of the other solution.	
		Suggest what substance might be present in the air to cause the pH to change. Explain how and why the pH of the pH 9.00 solution changes.	
		Substance present in air	
		Explanation	
			(3)
		(Total 17 ma	
Q3. T		uestion involves calculations about two strong acids and one weak acid. leasurements were carried out at 25 °C.	
	(a)	A 25.0 cm³ sample of 0.0850 mol dm³ hydrochloric acid was placed in a beaker and 100 cm³ of distilled water were added. Calculate the pH of the new solution formed. Give your answer to 2 decimal places.	
		(Extra space)	
			(2)
			(-)

HX is a weak monobasic acid.

(b)

	(i)	Write an expression for the acid dissociation constant, K_a , for HX.	
			(1
	(ii)	The pH of a 0.0850 mol dm ⁻³ solution of HX is 2.79 Calculate a value for the acid dissociation constant, <i>K</i> ₃, of this acid. Give your answer to 3 significant figures.	
		(Extra space)	
			(3
(c)	of 0. Calc	5.0 cm³ sample of 0.620 mol dm⁻³ nitric acid was placed in a beaker and 38.2 cm³ 550 mol dm⁻³ aqueous sodium hydroxide were added. culate the pH of the solution formed. syour answer to 2 decimal places.	
	The	ionic product of water K _w = 1.00 × 10 ⁻¹⁴ mol² dm ⁻⁶ at 25 °C.	

		(Ext	ra space)	
				(6)
			(Total 12	marks)
Q4.		This o	question is about the pH of some solutions containing potassium hydroxide and acid.	
	Give	all va	alues of pH to 2 decimal places.	
	(a)	(i)	Write an expression for pH.	
				(1)
		(ii)	Write an expression for the ionic product of water, $K_{\!\scriptscriptstyle w}$	
		(,	······································	
				(1)
		(iii)	At 10 °C, a 0.154 mol dm $^{-3}$ solution of potassium hydroxide has a pH of 13.72 Calculate the value of K_w at 10 °C.	2.

		(Extra space)	
			(2)
(b)		$^{8.5}$ °C, the acid dissociation constant $K_{\rm a}$ for ethanoic acid has the value $\times10^{\text{-}5}$ mol dm $^{\text{-}3}.$	
	(i)	Write an expression for K₃ for ethanoic acid.	
			44)
			(1)
	(ii)	Calculate the pH of a 0.154 mol dm ^{-₃} solution of ethanoic acid at 25 °C.	
		(Eytra anaga)	
		(Extra space)	
			(3)

(c) At 25 °C, the acid dissociation constant $K_{\rm a}$ for ethanoic acid has the value $1.75\times 10^{\text{-s}}$ mol dm $^{\text{-s}}.$

ı	Calculate the pH of the solution formed when 10.0 cm³ of 0.154 mol dm³ potassium hydroxide are added to 20.0 cm³ of 0.154 mol dm³ ethanoic acid at 25 °C.
-	
•	
•	
	(Future energy)
((Extra space)
•	
	Calculate the pH of the solution formed when 40.0 cm³ of 0.154 mol dm⁻³
ı	Calculate the pH of the solution formed when 40.0 cm³ of 0.154 mol dm¬³ potassium hydroxide are added to 20.0 cm³ of 0.154 mol dm¬³ ethanoic acid 25 °C.
1	
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.
1	ootassium hydroxide are added to 20.0 cm³ of 0.154 mol dmሜ ethanoic acid 25 °C.

(4)

(4)
(Total 16 marks)