Q1.Water dissociates slightly according to the equation: $$H_2O(I) \implies H^+(aq) + OH^-(aq)$$ The ionic product of water, $K_{\!\scriptscriptstyle W}$, is given by the expression $$K_{w} = [H^{+}][OH^{-}]$$ $K_{\!\scriptscriptstyle W}$ varies with temperature as shown in the table. | Temperature / °C | K _w / mol ² dm ⁻⁶ | |------------------|--| | 25 | 1.00 × 10 ⁻¹⁴ | | 50 | 5.48 × 10 ⁻¹⁴ | | (a) | Explain why the expression for $K_{\rm w}$ does not include the concentration of water. | | |-----|--|-----| (0) | | | | (2) | | | | | | (b) | Explain why the value of $K_{\!\scriptscriptstyle W}$ increases as the temperature increases. | | | | | | | | | | | | | | | | | | (2) (c) Calculate the pH of pure water at 50 °C. Give your answer to 2 decimal places. | | | (3) | |-----|--|------------------------| | | | | | (d) | Calculate the pH of 0.12 mol dm ⁻³ aqueous NaOH at 50 °C. Give your answer to 2 decimal places. | (| (3)
Total 10 marks) | **Q2.**Ammonium chloride, when dissolved in water, can act as a weak acid as shown by the following equation. $$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$ The following figure shows a graph of data obtained by a student when a solution of sodium hydroxide was added to a solution of ammonium chloride. The pH of the reaction mixture was measured initially and after each addition of the sodium hydroxide solution. | (a) | Suggest a suitable piece of apparatus that could be used to measure out the sodium hydroxide solution. Explain why this apparatus is more suitable than a pipette for this purpose. | | |-----|--|-----| | | Apparatus | | | | Explanation | | | | | | | | | (2) | | | | (-) | | | | | | (b) | Use information from the curve in the figure above to explain why the end point of this reaction would be difficult to judge accurately using an indicator. | | | | | | | | | | | | | | | | | | (2) | (c) | The pH at the end point of this reaction is 11.8. | | |-----|--|-----| | | Use this pH value and the ionic product of water, $K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$, to calculate the concentration of hydroxide ions at the end point of the reaction. | Concentration = mol dm ⁻³ | (3) | | | | (3) | | | | | | (d) | The expression for the acid dissociation constant for aqueous ammonium ions is | | | | $K_{a} = \frac{\left[NH_{3}\right]\left[H^{+}\right]}{\left[NH_{4}^{+}\right]}$ | | | | The initial concentration of the ammonium chloride solution was 2.00 mol dm ⁻³ . | | | | Use the pH of this solution, before any sodium hydroxide had been added, to calculate a value for $K_{\!\scriptscriptstyle a}$ | \mathcal{K}_{a} = mol dm ⁻³ | (3) | | | | (0) | | | | | | (e) | A solution contains equal concentrations of ammonia and ammonium ions. | | | | Use your value of K_a from part (d) to calculate the pH of this solution. Explain your working. | | | | (If you were unable to calculate a value for K_a you may assume that it has the value 4.75×10^{-9} mol dm ⁻³ . This is not the correct value.) | | | | | | | | | | pH= | | |--------------|-----|-------------|--|--------------| | | | | (Total 12 ma | (2)
arks) | | | | | | | | | | | | | | Q3. T | | | n involves calculations about two strong acids and one weak acid.
rements were carried out at 25 °C. | | | | (a) | 100
Calc | 5.0 cm³ sample of 0.0850 mol dm³ hydrochloric acid was placed in a beaker and cm³ of distilled water were added. sulate the pH of the new solution formed. so your answer to 2 decimal places. | (Ext | ra space) | | | | | | | (2) | | | | | | | | | (b) | HX | is a weak monobasic acid. | | | | | (i) | Write an expression for the acid dissociation constant, $K_{\!\scriptscriptstyle B}$, for HX. | | | | | | | | | | | | | (1) | | | | | | | | | | (ii) | The pH of a 0.0850 mol dm ⁻³ solution of HX is 2.79 Calculate a value for the acid dissociation constant, K_a , of this acid. Give your answer to 3 significant figures. | | | | | | | | | | | | | | | | (Extra space) | |-----|---| | | | | | | | | | | | | | | | | (c) | A 25.0 cm³ sample of 0.620 mol dm⁻³ nitric acid was placed in a beaker and 38.2 cm³ of 0.550 mol dm⁻³ aqueous sodium hydroxide were added. Calculate the pH of the solution formed. Give your answer to 2 decimal places. | | | The ionic product of water $K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6} \text{ at } 25 ^{\circ}\text{C}$. | (Extra space) | | | | | | | | | | (3) | | - | |--|------------------| | | (6) | | | (Total 12 marks) | | | | | | | | | | | | | | Q4. What is the pH of a 0.020 mol dm ⁻³ solution of a diprotic acid which is completely dissociated? | | | A 1.00 | | | B 1.40 | | | c 1.70 | | | D 4.00 | | | | (Total 1 mark) | | | | | Q5.This question is about alkalis and carboxylic acids. | | | In this question, all data are quoted at 25 °C. | | | (a) Carboxylic acids are weak acids. | | | State the meaning of the term weak as applied to carboxylic acids. | | | | | | | . (1) | | | | | (b) Write an equation for the reaction of propanoic acid with sodium carbonate | | | | . (1) | | ••••• | | |-------------------|--| | | | | (Ext | ra space) | | | | | | | | | | | | | | | | | | value of the acid dissociation constant K_a for benzenecarboxylic acid $I_a COOH$) is 6.31×10^{-5} mol dm $^{-3}$. | | | | | (C ₆ H | I₅COOH) is 6.31 × 10-⁵ mol dm⁻³. Write an expression for the acid dissociation constant K₃ for benzenecarboxyl | | (C ₆ H | I₅COOH) is 6.31 × 10-⁵ mol dm-³. Write an expression for the acid dissociation constant K₃ for benzenecarboxyl acid. | | (C ₆ F | I₅COOH) is 6.31 × 10-⁵ mol dm-³. Write an expression for the acid dissociation constant K₃ for benzenecarboxyl acid. | | (C ₆ H | Write an expression for the acid dissociation constant K _a for benzenecarboxyl acid. Calculate the pH of a 0.0120 mol dm ⁻³ solution of benzenecarboxylic acid. | | (C ₆ F | Write an expression for the acid dissociation constant K _a for benzenecarboxyl acid. Calculate the pH of a 0.0120 mol dm ⁻³ solution of benzenecarboxylic acid. | | (C ₆ F | Write an expression for the acid dissociation constant K _a for benzenecarboxyl acid. Calculate the pH of a 0.0120 mol dm ⁻³ solution of benzenecarboxylic acid. | | /Cytro anass | | |--------------|---| | (Extra space | 9) | | | | | | | | | | | | | | | ution with a pH of 4.00 is made using benzenecarboxylic acid and zenecarboxylate. | | dissolved in | e mass of sodium benzenecarboxylate (M_r = 144.0) that should be 1.00 dm³ of a 0.0120 mol dm³ solution of benzenecarboxylic acid buffer solution with a pH of 4.00 | | | f the acid dissociation constant K₃ for benzenecarboxylic acid
) is 6.31 × 10 ^{-₅} mol dm ^{-₃} . | (Extra space | e) | | | | | | | | | | (e) Two solutions, one with a pH of 4.00 and the other with a pH of 9.00, were left open to the air. | Suggest what substance might be present in the air to cause the pH to change. Explain how and why the pH of the pH 9.00 solution changes. | |---| | Substance present in air | | Explanation | | | | | | | | (3)
(Total 17 marks) | The pH of the pH 9.00 solution changed more than that of the other solution.