Q1.	(a)	At 50°C, the ionic product of water, K_w , has the value 5.48 × 10 ⁻¹⁴ mol ² dm ⁻⁶ .	
	(i)	Define the term $K_{\!\scriptscriptstyle{w}}$	
	(ii)	Define the term pH	
	(iii)	Calculate the pH of pure water at 50 °C. Explain why pure water at 50 °C is still neutral even though its pH is not 7.	
		Calculation	
		Explanation	(5)
(b)) At 2	25°C, K_w has the value 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ . Calculate the pH at 25 °C of	
	(i)	a 0.150 mol dm ^{-₃} solution of sodium hydroxide,	
	(ii)	the solution formed when 35.0 cm³ of this solution of sodium hydroxide is mixed with 40.0 cm³ of a 0.120 mol dm⁻³ solution of hydrochloric acid.	

				(8)
				(6)
	(c)		0.150 mol dm³ solution of a weak acid HX at 25 °C, 1.80% of the acid cules are dissociated into ions.	
		(i)	Write an expression for $K_{\!\scriptscriptstyle 0}$ for the acid HX.	
		(ii)	Calculate the value of K_a for the acid HX at this temperature and state	e its units.
				(5) (Total 18 marks)
Q2.V			f the following is the change in units of pH which occurs when 10.0 cm of a strong monoprotic acid are made up to 1.0 dm³ with water?	i³ of a 1.0
	Α	1	· ,	
	В	2		
	С	3		

Q3. The pH of 0.001 M NaOH at 25°C is

- **A** 13
- **B** 11
- **C** 9
- **D** 3

(Total 1 mark)

Q4.The equation and rate law for the reaction of substance P with substance Q are given below.

$$2P + Q \rightarrow R + S$$

$$rate = k[P]^{2}[H^{+}]$$

Under which one of the following conditions, all at the same temperature, would the rate of reaction be slowest?

	[P] / mol dm ⁻³	рН
Α	0.1	0
В	1	2
С	3	3
D	10	4

(Total 1 mark)

Q5.Addition of which one of the following to 10 cm³ of 1.0 M NaOH would result in the pH being halved?

- A 10 cm³ of water
- **B** 100 cm³ of water
- C 5 cm³ of 1.0 M HCl
- **D** 10 cm³ of 1.0 M HCl

Q6. A 0.210 mol dm⁻³ solution of potassium hydroxide was added from a burette to 25.0 cm³ of a 0.160 mol dm⁻³ solution of ethanoic acid in a conical flask. Given that the value of the acid dissociation constant, *K*_s, for ethanoic acid is 1.74 × 10⁻⁵ mol dm⁻³, calculate the pH at 25 °C of the solution in the conical flask at the following three points:

before any potassium hydroxide had been added; after 8.0 cm³ of potassium hydroxide solution had been added; after 40.0 cm³ of potassium hydroxide solution had been added.

(Total 16 marks)