		e an expression for pH and calculate the concentration of this acid.	
		centration	
	•••••		
(b)	A 0.	150 mol dm⁻³ solution of a weak acid, HX, also has a pH of 2.34	
	(i)	Write an expression for the acid dissociation constant, $\mathcal{K}_{\!\scriptscriptstyle s}$, for the acid HX.	
	(ii)	Calculate the value of K_a for this acid and state its units.	
		Calculation	
		Units	
	(iii)	Calculate the value of p $K_{\!\scriptscriptstyle \parallel}$ for the acid HX. Give your answer to two decimal places.	
(c)		0.0 cm³ sample of a 0.480 mol dm³ solution of potassium hydroxide was partially ralised by the addition of 18.0 cm³ of a 0.350 mol dm³ solution of sulphuric acid.	
	(i)	Calculate the initial number of moles of potassium hydroxide.	

(ii)	Calculate the number of moles of sulphuric acid added.
(iii)	Calculate the number of moles of potassium hydroxide remaining in excess in the solution formed.
(iv)	Calculate the concentration of hydroxide ions in the solution formed.
` '	
(v)	Hence calculate the pH of the solution formed. Give your answer to two decimal places.
	(6) (Total 13 marks)

Q2.In this question, give all pH values to 2 decimal places.

(a)	(i)	Write expressions for the ionic product of water, $K_{\!\scriptscriptstyle w}$, and for pH.			
		K _w =			
		pH =			
	(ii)	At 318 K, the value of K_w is 4.02×10^{-14} mol ² dm ⁻⁶ and hence the pH of pure water is 6.70 State why pure water is not acidic at 318 K.			
	(iii)	Calculate the number of moles of sodium hydroxide in 2.00 cm³ of 0.500 mol dm³ aqueous sodium hydroxide.			
	(iv)	Use the value of K_{*} given above and your answer to part (a)(iii) to calculate the pH of the solution formed when 2.00 cm³ of 0.500 mol dm¬³ aqueous sodium hydroxide are added to 998 cm³ of pure water at 318 K.			
			(6)		
(b)		98 K, the acid dissociation constant, <i>K</i> ₃, for propanoic acid, CH₃CH₂COOH, has value 1.35 × 10-⁵mol dm⁻³.			
	(i)	Write an expression for $K_{\!\scriptscriptstyle a}$ for propanoic acid.			

(ii)	Calculate the pH of 0.125 mol dm³ aqueous propanoic acid at 298 K.
Sod	ium hydroxide reacts with propanoic acid as shown in the following equation.
	NaOH + CH₃CH₂COOH → CH₃CH₂COONa + H₂O
	ffer solution is formed when sodium hydroxide is added to an excess of eous propanoic acid.
(i)	Calculate the number of moles of propanoic acid in 50.0 cm³ of 0.125 mol dm⁻³ aqueous propanoic acid.
(ii)	Use your answers to part (a)(iii) and part (c)(i) to calculate the number of moles of propanoic acid in the buffer solution formed when 2.00 cm³ of 0.500 mol dm⁻³ aqueous sodium hydroxide are added to 50.0 cm³ of 0.125 mol dm⁻³ aqueous propanoic acid.

(4)

(c)

(iii)	Hence calculate the pH of this buffer solution at 298 K.	
		•
		(6) (Total 16 marks)

Q3.This question is about the reaction between propanone and an excess of ethane-1,2-diol, the equation for which is given below.

$$\mathsf{CH_3COCH_3} + \mathsf{HOCH_2CH_2OH} \underset{\mathbf{Y}}{\longleftarrow} (\mathsf{CH_3})_2 \ \mathsf{C} \underset{\mathbf{O} - \mathsf{CH_2}}{\overset{\mathsf{O} - \mathsf{CH_2}}{\longleftarrow}} + \mathsf{H_2O}$$

In a typical procedure, a mixture of 1.00 g of propanone, 5.00 g of ethane-1,2-diol and 0.100 g of benzenesulphonic acid, $C_6H_5SO_3H$, is heated under reflux in an inert solvent. Benzenesulphonic acid is a strong acid.

If 0.100 g of the strong monoprotic acid, benzenesulphonic acid, was dissolved in 100 cm³ of water, the pH of the solution would be

- **A** 0.20
- **B** 1.20
- **C** 2.20
- **D** 3.20

(Total 1 mark)

Q4. Iodine and propanone react in acid solution according to the equation

$$I_2$$
 + CH_3COCH_3 \rightarrow CH_3COCH_2I + HI

The rate equation for the reaction is found to be

rate =
$$k [CH_3COCH_3][H^+]$$

(a) Deduce the order of reaction with respect to iodine and the overall order			to iodine and the overall order of reaction.	
	Order with respect to iodine			
	Overall order			
				(2)
(b)	At the st	tart of the experiment, the rate of	reaction was found to be	
(2)			ations of the reactants were as shown	
	Delow.	-		
Read	ctant	Concentration / mol dm ^{-₃}		
CH₃C	OCH ₃	1.50		
ı	2	2.00 × 10 ⁻²		
F	 +	3.00 × 10⁻²		
	Use thes	se data to calculate a value for the	rate constant and deduce its units.	
	Rate cor	nstant		
	Units			(3)
				(-)
(c)	How car	n you tell that H ⁻ acts as a catalyst	in this reaction?	
				(2)
(d)			experiment were to be repeated at the centrations of iodine and propanone as in	
		out at a pH of 1.25	1 1	

(3)
(3) (Total 10 marks)
CIOLAL IU IIIALKSI

Q5.For this question **one or more** of the options given may be correct. Select your answer by means of the following code

- A if 1, 2 and 3 only are correct
- B if 1 and 3 only are correct
- C if 2 and 4 only are correct
- **C** if **4** alone is correct

Directions summarised			
Α	В	С	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

Solutions with a pH of 1.0 include

- 1 0.1 mol dm⁻³ hydrochloric acid
- 2 0.1 mol dm⁻³ ethanoic acid
- 3 0.05 mol dm⁻³ sulphuric acid
- 4 0.2 mol dm⁻³ nitric acid

(Total 1 mark)

Q6. The pH curve shown below was obtained when a 0.150 mol dm⁻³ solution of sodium hydroxide was added to 25.0 cm³ of an aqueous solution of a weak monoprotic acid, HA.

(c) Explain why dilution with a small volume of water does not affect the pH of a buffer solution.

				(2		
	(d)	(i)	Calculate the change in pH when 0.250 mol dm ⁻³ hydrochloric acid is diluted with water to produce 0.150 mol dm ⁻³ hydrochloric acid.			
		` '	Calculate the volume of water which must be added to 30.0 cm³ of 0.250 mol dm³ hydrochloric acid in order to reduce its concentration to 0.150 mol dm³.			
			(Total 12 ma	4) rks		
Q7. U	se the	inforn	nation about the following solutions to answer the question below.			
	Solut water	tion F:	This is a mixture of 1 mol of propanoic acid, 1 mol of methanol and 2 mol of			
		t ion G equili	: This was originally the same mixture as solution ${f F}$ but it has been left to brium.			
	Comp	to the pH of solution F , the pH of solution G will be				
	Α	consi	derably lower.			
	В	slightl	ly lower.			

С

slightly higher.

D exactly the same.

(Total 1 mark)