M1. (a) -log [H[·]] ecf if [] wrong and already penalised

1

4.57 × 10^{-₃} *allow 4.6* × *10*-³

ignore units

1

(b) (i)
$$K_a = \frac{[H^+][X^-]}{[HX]}$$
 allow HA etc
 $not \frac{[H^+]^2}{[HX]}$ but mark on
If expression wrong allow conseq units in (ii)
but no other marks in (ii)

1

(ii)
$$\frac{[H^+]^2}{[HX]} = \frac{(4 \cdot 57 \times 10^{-3})^2}{[0 \cdot 150]}$$
If use 4.6×10^3

$$K_a = 1.4(1) \times 10^4 \text{ and } pKa = 3.85$$

$$= 1.39 \times 10^4$$
allow $1.39 - 1.41 \times 10^4 \text{ mol } dm^{-3}$
(iii) $pK_a = 3.86$
Penalise dp of final answer < or > 2 in pH once in paper 1

(c) (i)
$$\frac{30}{1000} \times 0.480 = 0.0144 \text{ or } 1.4(4) \times 10^{-2}$$

Mark is for answer (M1)

(ii) $\frac{18}{1000} \times 0.350 = 0.0063 \text{ or } 6.3 \times 10^{-3}$ Mark is for answer (M2)

1

1

1

(iv)
$$1.80 \times 10^{-3} \times \frac{1000}{48} = 0.0375 (0.038)$$

M4 is for answer
If vol is not 48×10^{-3} (unless AE) lose M4 and next mark gained
If multiply by 48×10^{-3} this is AE - i.e. lose only M4
If multiply by 48×10^{-3} this is AE - i.e. lose only M4
(v) $10^{-14}/0.0375$ $(10^{-14}/0.038)$
M5 for K_J[OH]
(= 2.66×10^{-13}) (= 2.63×10^{-13})
or pOH
or pOH = 1.426 (or pOH = 1.420)
If no attempt to use K_a or pOH lose both M5 and M6
1
pH = 12.57 (12.58) M6
Allow M6 conseq on AE in M5 if method OK
1

1

[13]

(iii) $(2.0 \times 10^{-3}) \times 0.5 = 1.0 \times 10^{-3}$

(iv)
$$[H^{+}] = \frac{4.02 \times 10^{-14}}{1.0 \times 10^{-3}}$$
 (= 4.02 × 10⁻¹¹)

(iv)
$$[H^*] = 1.0 \times 10^{-3}$$
 (= 4.02 × 10⁻¹¹)

(b) (i)
$$K_a = [H^+][CH_3CH_2COO^-]$$

[CH_3CH_2COOH]
$$= [H^+]$$

[CH_3CH_2COOH]

$$[H^*] = \sqrt{(1.35 \times 10^{-5}) \times 0.125} \quad (= 1.30 \times 10^{-3})$$

(c) (i)
$$(50.0 \times 10^{-3}) \times 0.125 = 6.25 \times 10^{-3}$$

(ii) $(6.25 \times 10^{-3}) - (1.0 \times 10^{-3}) = 5.25 \times 10^{-3}$
(iii) mol salt formed = 1.0×10^{-3}
 $[H^+] = K_a \times [CH_3CH_2COOH] \\ [CH_3CH_2COO^-)$
1
 $= (1.35 \times 10^{-5}) \times \frac{(5.25 \times 10^{-3})/\vee}{(1.0 \times 10^{-3})/\vee} (= 7.088 \times 10^{-5})$
1

[16]

1

1

M3.C

 ${\it Physics} {\it AndMathsTutor.com}$

M4. (a) Order with respect to iodine: 0 (1) Overall order: 2 (1)

(b) Rate constant:
$$k = \frac{2 \times 10^{-5}}{(1.5) \times (3 \times 10^{-2})} = 4.4(4) \times 10^{-4}$$
 (1)
Units: mol⁻¹ dm³ s⁻¹ (1)

(c) Appears in rate equation (1) OR implied by mention of concentration or order

does not appear in (stoichiometric / overall) equation (1)

(d)
$$pH = -log_{10} [H^{+}] (1)$$

= 1.25
 $[H^{+}] = 0.056(2) (1)$
 \therefore rate = (4.44 × 10⁻⁴) × (1.50) × (0.0562)
= 3.75 × 10⁻⁵ (1) (mol dm³ s⁻¹)
(3.7 - 3.8)
Can score all 3 conseq on k from part (b)

[10]

[1]

M5.B

2

2

3

3

	(a)	Concentration of acid: $m_1v_1 = m_2v_2$ hence $25 \times m_1 = 18.2 \times 0.150$	
	OR		
	moles NaOH = 2.73 ×10⁻³;		1
	m₁ =	= 18.2 × 0.150/25= 0.109;	1
(b)	(i)	K_{a} =[H ⁺][A ⁻]/[HA] not K_{a} = [H ⁺] ² / [HA];	1
	(ii)	pK _a = –logK _a ;	1
	(iii)	[A [_]] = [HA];	1
		hence $K_a = [H^+] [A^-] / [HA] = [H^+]$	
		and $-\log K_{a} = -\log [H^{+}];$	1
(c)	ratio	o [A ⁻] : [HA] remains constant;	1
	hen	ce as $[H^{\cdot}] = K_{\circ} [HA] / [A^{-}];$ $[H^{\cdot}]$ remains constant;	1
(d)	(i)	pH of 0.250 mol dm- ³ HCl = 0.60 and pH of 0.150 mol dm- ³ HCl = 0.82;	1
		pH change = 0.22;	1
	(ii)	moles HCl = 30 × 0.250 × 10 ⁻ ³ = v × 0.150 × 10 ⁻ ³ = 7.50 × 10 ⁻ ³ OR	
		v = 30 × 0.250 × 10 ⁻³ / 0.150 × 10 ⁻³ =50;	1
		water added = $50 - 30 = 20 \text{ cm}^3$;	1
	(b) (c) (d)	(a) OR mole (b) (i) (ii) (ii) (iii) (c) ratio hen (d) (i)	(a) Concentration of acid: $m_i v_i = m_i v_i$ hence $25 \times m_i = 18.2 \times 0.150$ OR moles NaOH = 2.73 × 10 ⁻¹ ; $m_i = 18.2 \times 0.150/25 = 0.109$; (b) (i) $K = [H^{-}][A^{-}]/[HA]$ not $K = [H^{-}]^{-}/[HA]$; (ii) $pK_i = -logK_i$; (iii) $[A^{-}] = [HA]$; hence $K_i = [H^{-}][A^{-}]/[HA] = [H^{-}]$ and $-logK_i = -log[H^{-}]$; (c) ratio $[A^{-}]$: $[HA]$ remains constant; hence as $[H^{-}] = K_i [HA] / [A^{-}]$; $[H^{-}]$ remains constant; (d) (i) pH of 0.250 mol dm ⁻³ HCl = 0.60 and pH of 0.150 mol dm ⁻³ HCl = 0.82; pH change = 0.22; (ii) moles HCl = $30 \times 0.250 \times 10^{-3} = v \times 0.150 \times 10^{-3} = 7.50 \times 10^{-3}$ OR $v = 30 \times 0.250 \times 10^{-7} (0.150 \times 10^{-3} = 50;$ water added = $50 - 30 = 20$ cm ⁻ ;

M7.C

[1]