M 1.		(a)	(i) - log[H ⁺] penalise missing [] here and not elsewhere	1
		(ii)	[H⁺][OH-] Allow () brackets, but must have charges	1
		(iii)	Mark independently from a(ii) [H ⁺] = 10 ^{-13.72} = 1.905 × 10 ⁻¹⁴ If wrong no further mark	1
			$K_w = 1.905 \times 10^{-14} \times 0.154 = = (2.93 - 2.94) \times 10^{-15}$	1
	(b)	(i)	Ka = $\frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$ Must have charges and all brackets, allow () Acid/salt shown must be CH₃COOH not HA and correct formulae needed	1
		(ii)	In pH values penalise fewer than 3 sig figs each time but allow more than 2 dp For values above 10, allow 3sfs - do not insist on 2 dp	
			$K_{a} = \frac{[H^{+}]^{2}}{[CH_{3}COOH]}$ Allow HA	1
			$([H^+]^2 = 1.75 \times 10^{-5} \times 0.154 = 2.695 \times 10^{-6} = 2.70 \times 10^{-6})$ If $$ shown but not done gets pH = 5.57 (scores 2)	
			[H [·]] = 1.64 × 10 ^{-₃} Allow mark for pH conseq to their [H+] here only	1
			pH = 2.78 or 2.79	1

(c) (i) In pH values penalise fewer than 3 sig figs each time but allow more than 2 dp

For values above 10, allow 3sfs - do not insist on 2 dp

M1 Initially

mol OH- = (10 \times 10-3) \times 0.154 and

mol HA = $(20 \times 10^{-3}) \times 0.154$

or mol OH- = 1.54×10^{-3} and mol HA = 3.08×10^{-3}

1

$$\mathbf{M2} [H^{\cdot}] = \mathbf{K}_{*} \frac{[CH_{3}COOH]}{[CH_{3}COOH^{-}]}$$

or with numbers

Allow Henderson Hasselbach

$$pH = pK_s + \log \frac{[CH_3COO^-]}{[CH_3COOH]}$$

M3 mol ethanoic acid left = (mol ethanoate ions) = 1.54×10^{-3}

K_a = [H⁺] or pH = pK_a scores M1, M2 and M3
1 If either mol acid in mixture or mol salt wrong
- max 2 for M1 and M2
Any mention of [H⁺]² - max 2 for M1 and M3

M4 pH (= - log 1.75 × 10^{-₅}) = 4.76 or 4.757 *Not 4.*75

1

1

If no subtraction (so mol ethanoic acid in buffer = original mol) pH = 4.46 scores 2 for **M1** and **M2** If $[H+]^2$ used, pH = 3.02 scores 2 for **M1** and **M3**

 (ii) In pH values penalise fewer than 3 sig figs each time but allow more than 2 dp For values above 10, allow 3sfs - do not insist on 2 dp **M1** <u>XS mol KOH</u> (= $(20 \times 10^{-3}) \times 0.154$) = 3.08×10^{-3}

If no subtraction: max 1 for correct use of volume No subtraction and no use of volume scores zero If wrong subtraction or wrong moles Can only score **M2** and **M3** for process

 $\begin{array}{l} \textbf{M2} \ [\text{OH}] = 3.08 \times 10^{-3} \times \begin{array}{c} \frac{10^3}{60} \\ \hline 60 \end{array} = 0.0513(3) \\ \hline \text{Mark for dividing their answer to } \textbf{M1} \text{ by correct volume} \\ (method mark) \\ \hline \text{If no volume or wrong volume or multiplied by volume, max 2} \\ \hline \text{for } \textbf{M1} \text{ and } \textbf{M3} \text{ process} \end{array}$

M3 [H[·]] = $\frac{10^{-14}}{0.05133}$ (= 1.948 × 10⁻¹³ to 1.95 × 10⁻¹³) **or** pOH = 1.29 *Mark for K_w divided by their answer to* **M2** *If pOH route, give one mark for 14 – pOH*

M4 pH = 12.7(1) *Allow 3sf but not 12.70*

If no subtraction and no use of volume (pH = 11.79 scores zero) If no subtraction, max 1 for correct use of volume, (60cm³) (pH = 13.01 scores 1) If volume not used, pH = 11.49 (gets 2) If multiplied by vol, pH = 10.27 (gets 2)

[16]

M2. (a) (i) $-\log[H^{\cdot}]$ or log $1/[H^{\cdot}]$ penalise missing square brackets here only

1

1

1

1

1

(ii) 0.81

- (iii) M1 mol H⁺ = 1.54 × 10⁻³
 if wrong no further mark if 1.5 × 10⁻³ allow M1 but not M2 for 2.82
 - M2 pH = 2.81 allow more than 2dp but not fewer

(b) **M1**
$$[H^+] = 3.31 \times 10^{-3}$$

M2
$$K_a = \frac{[H^+][X^-]}{[HX]}$$
 or $\frac{[H^+]^2}{[HX]}$ or using numbers
do not penalise () or one or more missing []

M3
$$[HX] = \frac{[H^+]^2}{K_a} = \frac{(3.31 \times 10^{-3})^2}{4.83 \times 10^{-5}}$$

allow conseq on their $[H^+]^2/(4.83 \times 10^{-5})$ (AE)
if upside down, no further marks after M2

M4 [HX] = 0.227 *allow 0.225 – 0.23*

(c) M1 extra/added
$$OH^{-}$$
 removed by reaction with H^{+} or the acid

M2 correct discussion of equn shift i.e. HX \rightleftharpoons H⁺ + X⁻ moves to right 1

OR

ratio $\frac{[HX]}{[X^-]}$ remains almost constant

(d) (i) **M1** mol HY = $(50 \times 10^{-3}) \times 0.428 = 0.0214$

1

1

1

1

1

1

1

M2 and M3

- [H⁺] = 1.22 ×10⁻⁵ M3 mark for answer
- Μ4 pH = 4.91allow more than 2dp but not fewer allow M4 for correct pH calculation using their [H⁺] (this applies in (d)(i) only)

If either HY value or Y-value wrong, (apart from AE -1) lose

If Henderson Hasselbalch equation used:

OR [Y] = .0236 ×
$$\frac{1000}{50}$$
 = 0.472 mark for answer

M2 pKa = 4.87 1

mark for answer

OR [Y] = .0236 ×

M2

1000 = 0.472

0.0214

50

0.0236 1.35 × 10^{-₅} = [H⁺] × 0.0214 OR 0.428 [H⁺] = 1.35 × 10⁻⁵ × 0.472 OR 0.472 1.35 × 10-₅ = [H+] × 0.428 OR must be numbers not just rearrangement of Ka expression

[H⁺] = 1.35 × 10^{-₅} × 0.0236

1

1

1

1

1

M3 $\log_{0.0236}^{(0.0214)} = -0.043$ $\log_{0.472}^{(0.428)} = -0.043$ If either HY value or Y- value wrong, (apart from AE-1) lose M3 and M4 **M4** pH = 4.87 - (-0.043) = 4.91 allow more than 2dp but not fewer 1

- (ii) Can score full marks for correct consequential use of their HY and Y⁻ values from d(i)
 - M1 Mol HY after adding NaOH = 0.0214 5.0 × 10⁻⁴ = 0.0209 AE in subtraction loses just M1 If wrong initial mol HY (i.e. not conseq to part d(i)) or no subtraction or subtraction of wrong amount, lose M1 and M3
 - M2 Mol Y⁻ after adding NaOH = 0.0236 + 5.0 × 10⁻⁴ = 0.0241 AE in addition loses just M2 If wrong mol Y⁻ (i.e. not conseq to part d(i)) or no addition or addition of wrong amount lose M2 and next mark gained

1

1

M3 [H⁺] = $1.35 \times 10^{-5} \times \frac{0.0209}{0.0241}$ (= 1.17×10^{-5})

if convert to concentrations

$$[H^{-}] = 1.35 \times 10^{-5} \times \frac{0.418}{0.482}$$
 (= 1.17 × 10⁻⁵)

1

if HY/Y- upside down, no further marks

M4 pH = 4.93

allow more than 2dp but not fewer NOT allow M4 for correct pH calculation using their [H^{\cdot}] (this allowance applies in (d)(i) only)

1

If Henderson Hasselbalch equation used:

	Can score full marks for correct consequential use of their HY and Y- values from d(i)		
M1	Mol HY after adding NaOH = $0.0214 - 5.0 \times 10^{-4} = 0.0209$ AE in subtraction loses just M1 If wrong initial mol HY (i.e. not conseq to part d(i)) or no subtraction or subtraction of wrong amount lose M1 and M3	1	
M2	Mol Y ⁻ after adding NaOH = $0.0236 + 5.0 \times 10^{-4} = 0.0241$ AE in addition loses just M2 If wrong mol Y ⁻ (i.e. not conseq to part d(i)) or no addition or addition of wrong amount lose M2 and next mark gained	1	
МЗ	$\log \left(\frac{0.0209}{0.0241}\right) = -0.062$ if HY/Y- upside down, no further marks	1	
M4	pH = 4.87 – (– 0.062) = 4.93 allow more than 2dp but not fewer	1	[18]

M3. (a)		(i)	–log[H⁺]	
			Penalise missing [] here and not elsewhere	1
		(ii)	[H+][OH-]	1
				1
(t)	(i)	$[H^*] = 2.34 \times 10^{-7}$	1
			pH = 6.63	
			Penalise fewer than 3 sig figs but allow more than 2 dp	1
		(ii)	[H⁺] = [OH⁻]	
				1

(iii) M1 [H⁺] = K_w/[OH⁻] if upside down or CE, allow M3 only for correct use of their [H⁺]

1

1

1

1

1

1

1

1

- **M2** $(= 5.48 \times 10^{-14}/0.140) = 3.91 \times 10^{-13}$
- **M3** pH = 12.4(1) not 12.40 (AE from 12.407)

Penalise fewer than 3 sig figs but allow more than 3 sfs For values above 10, allow 3sfs - do not insist on 2 dp. For values below 1, allow 2dp - do not insist on 3 sig figs Not allow pH = 14 - pOH but can award M3 only for pH =13.1(46) Can award all three marks if $pK_w = 13.26$ is used

- (c) **M1** mol NaOH = mol OH⁻ = $(30 \times 10^{-3}) \times 0.20 = 6.0 \times 10^{-3}$ mark for answer
 - **M2** mol H₂SO₄ = $(25 \times 10^{-3}) \times 0.15 = 3.75 \times 10^{-3}$ mark for answer
 - **M3** mol H⁺ = $(25 \times 10^{-3}) \times 0.15 \times 2 = 7.5 \times 10^{-3}$ OR XS mol H₂SO₄ = 0.75×10^{-3}

if factor of 2 missed or used wrongly, CE - lose M3 and next mark gained. In this case they must then use K_w to score any more.

see examples below

M4 XS mol H⁺ = 1.5 × 10⁻³

M5 [H⁺] = (1.5 × 10⁻³) × (1000/55) = 0.0273 if no use or wrong use of volume, lose M5 and M6 except if 1000 missed AE −1 (pH = 4.56)

pH = 1.56 Penalise fewer than 3 sig figs but allow more than 3 sfs For values above 10, allow 3sfs - do not insist on 2 dp. For values below 1, allow 2dp – do not insist on 3 sig figs

M6

1

1

1

1

1

1

1

M4. $k = rate/[CH_3CH_2COOCH_3][H^*]$ (a)

or

$$= \frac{1 \cdot 15 \times 10^{-4}}{(0.150)(0.555)}$$

= 1.38 × 10⁻³ to 1.4 × 10⁻³
mol⁻¹ dm³ s⁻¹

(b) ans = rate constant × $(\frac{1}{2} \times 0.150) \times (\frac{1}{2} \times 0.555)$ ignore units

= rate constant × 0.0208

$$2.88 \times 10^{-5}$$
 (1.38 × 10⁻³ gives 2.87 × 10⁻⁵)
Allow 2.87 - 2.91 × 10⁻⁵ (1.4 × 10⁻³ gives 2.91 × 10⁻⁵)

(c) $[H^+] = rate/ k[CH_3COOCH_2CH_3]$

$$= \frac{4.56 \times 10^{-5}}{(8 \cdot 94 \times 10^{-4})(0 \cdot 123)}$$

= 0.415 (0.4146)
pH = 0.38 mark independently

[7]