Q1.		This qu	uestion is about the pH of several solutions.		
	Give all values of pH to 2 decimal places.				
	(a)	(i)	Write an expression for pH.		
				(1)	
		(ii)	Calculate the pH of 0.154 mol dm ^{-₃} hydrochloric acid.		
				(1)	
		(iii)	Calculate the pH of the solution formed when 10.0 cm³ of 0.154 mol dm⁻³ hydrochloric acid are added to 990 cm³ of water.		
				(2)	
	(b)	4.83	acid dissociation constant, <i>K</i> ₅, for the weak acid HX has the value × 10⁻⁵ mol dm⁻³ at 25 °C. ution of HX has a pH of 2.48		
		Calcu	ulate the concentration of HX in the solution.		
				(4)	

(c)		lain why the pH of an acidic buffer solution remains almost constant despite the tion of a small amount of sodium hydroxide.	
			(2)
(d)		e acid dissociation constant, K_s , for the weak acid HY has the value 5×10^{-5} mol dm ⁻³ at 25 °C.	
	A bu 50.0	uffer solution was prepared by dissolving 0.0236 mol of the salt NaY in cm³ of a 0.428 mol dm⁻³ solution of the weak acid HY	
	(i)	Calculate the pH of this buffer solution.	
			(4)
	(ii)	A 5.00 × 10 ^{-₁} mol sample of sodium hydroxide was added to this buffer	

solution.

	(4)
(Tot	(4) al 18 marks)
Q2. In this question, give all values of pH to 2 decimal places.	
(a) (i) Write an expression for the term pH.	
	(1)
(ii) Calculate the concentration, in mol dm ⁻³ , of an aqueous solution of sulfur acid that has a pH of 0.25	ic

(b) A student carried out a titration by adding an aqueous solution of sodium hydroxide from a burette to an aqueous solution of ethanoic acid. The end-point was reached

when 22.60 cm _3 of the sodium hydroxide solution had been added to 25.00 cm _3 of 0.410 mol dm _3 ethanoic acid.

(i)	Write an equation for the reaction between sodium hydroxide and ethanoic acid.				
		(1)			
(ii)	Calculate the concentration, in mol dm ⁻³ , of the sodium hydroxide solution used.				
		(0)			
		(2)			
(iii)	A list of indicators is shown below.				
Indicator	pH range				
thymol blue	1.2–2.8				
bromophenol	blue 3.0-4.6				
litmus	5.0–8.0				
cresol purple	7.6–9.2				
	Select from the list the most suitable indicator for the end-point of this titration.				
		(1)			
(iv)	Suggest why the concentration of sodium hydroxide in a solution slowly decreases when left open to air.				
		(1)			

i)	Write an expression for the acid dissociation constant, $\mathcal{K}_{\!\scriptscriptstyle a}$, for ethanoic acid
(ii)	Calculate the pH of 0.410 mol dm ^{-₃} ethanoic acid at this temperature.
iii)	Calculate the pH of the buffer solution formed when 10.00 cm³ of 0.100 mc dm³ potassium hydroxide are added to 25.00 cm³ of 0.410 mol dm³ ethanoi acid.
iii)	dm ⁻³ potassium hydroxide are added to 25.00 cm ³ of 0.410 mol dm ⁻³ ethanoi
iii)	dm ⁻³ potassium hydroxide are added to 25.00 cm ³ of 0.410 mol dm ⁻³ ethanolacid.
iii)	dm ⁻³ potassium hydroxide are added to 25.00 cm ³ of 0.410 mol dm ⁻³ ethanolacid.
iii)	dm ⁻³ potassium hydroxide are added to 25.00 cm ³ of 0.410 mol dm ⁻³ ethanoi acid.
iii)	dm ⁻³ potassium hydroxide are added to 25.00 cm ³ of 0.410 mol dm ⁻³ ethanoi acid.
(iii)	dm ⁻³ potassium hydroxide are added to 25.00 cm ³ of 0.410 mol dm ⁻³ ethanoi acid.
(iii)	dm ⁻³ potassium hydroxide are added to 25.00 cm ³ of 0.410 mol dm ⁻³ ethanoi acid.
(iii)	dm ⁻³ potassium hydroxide are added to 25.00 cm ³ of 0.410 mol dm ⁻³ ethanoi acid.
(iii)	dm ⁻³ potassium hydroxide are added to 25.00 cm ³ of 0.410 mol dm ⁻³ ethanoi acid.

Q3. ln 1	Q3.In this question, give all pH values to 2 decimal places.				
((a)	(i)	Write expressions for the ionic product of water, $K_{\!\scriptscriptstyle w}$, and for pH.		
			$K_{W} = \dots$		
			pH =		
		(ii)	At 318 K, the value of K_w is 4.02×10^{-14} mol ² dm ⁻⁶ and hence the pH of pure water is 6.70		
			State why pure water is not acidic at 318 K.		
		(iii)	Calculate the number of moles of sodium hydroxide in 2.00 cm³ of 0.500 mol dm³ aqueous sodium hydroxide.		
		(iv)	Use the value of K_{*} given above and your answer to part (a)(iii) to calculate the pH of the solution formed when 2.00 cm 3 of 0.500 mol dm $^{-3}$ aqueous sodium		
			hydroxide are added to 998 cm³ of pure water at 318 K.		

(6)

(b)	At 298 K, the acid dissociation constant, K_s , for propanoic acid, CH_3CH_2COOH , has the value 1.35×10^{-5} mol dm ⁻³ .				
	(i)	Write an expression for $K_{\!\scriptscriptstyle 0}$ for propanoic acid.			
	(ii)	Calculate the pH of 0.125 mol dm ^{-₃} aqueous propanoic acid at 298 K.			
(c)	Sodi	Sodium hydroxide reacts with propanoic acid as shown in the following equation.			
		NaOH + CH₃CH₂COOH → CH₃CH₂COONa + H₂O			
		ffer solution is formed when sodium hydroxide is added to an excess of eous propanoic acid.			
	(i)	Calculate the number of moles of propanoic acid in 50.0 cm³ of 0.125 mol dm⁻³ aqueous propanoic acid.			
	(ii)	Use your answers to part (a)(iii) and part (c)(i) to calculate the number of moles of propanoic acid in the buffer solution formed when 2.00 cm³ of 0.500 mol dm⁻³ aqueous sodium hydroxide are added to 50.0 cm³ of 0.125 mol dm⁻³ aqueous propanoic acid.			

(4)

Hence calculate the pH of this buffer solution at 298 K.	
	(6) (Total 16 marks)