Q1.This qu	estion is	about s	everal Brøns	sted-Low	ry acids and	bases.		
(a)	Define	the term	Brønsted–L	<i>owry</i> aci	d.			
								(1)
(b)	substar	nce imme	ediately abo	ve the bo		a Brønste	te whether the ed–Lowry acid (A) or a x boxes.	
(i) CH₃C0	ООН	+	H₂O	\rightleftharpoons	CH.COO-	+	H₃O⁺	
								(1)
(ii) CH₃l	NH_2	+	H₂O	\rightleftharpoons	CH ₂ NH ₂ +	+	OH-	
								(1)
								(-,
(iii) H	INO ₃	+	H ₂ SO ₄	=	H _a NO _a +	+	HSO₄ -	
_								(1)

(c) A 25.0 cm³ sample of 0.0850 mol dm³ hydrochloric acid was placed in a beaker. Distilled water was added until the pH of the solution was 1.25.

Calculate the total volume of the solution formed. State the units.

•••••	
(Ext	ra space)
	98 K, the value of the acid dissociation constant (K_a) for the weak acid HX in eous solution is 3.01 × 10 ⁻⁵ mol dm ⁻³ .
(i)	Calculate the value of p K_a for HX at this temperature.
``	Give your answer to 2 decimal places.
(ii)	Write an expression for the acid dissociation constant (K_a) for the weak acid HX
(ii)	Write an expression for the acid dissociation constant ($K_{\! \ \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
(ii)	
(ii)	
(ii)	
(ii)	
	HX.
(iii)	
	Calculate the pH of a 0.174 mol dm ⁻³ solution of HX at this temperature.
	Calculate the pH of a 0.174 mol dm ⁻³ solution of HX at this temperature.

	(Extra space)
(e)	An acidic buffer solution is formed when 10.0 cm³ of 0.125 mol dm⁻³ aqueous sodium hydroxide are added to 15.0 cm³ of 0.174 mol dm⁻³ aqueous HX. The value of K₃ for the weak acid HX is 3.01 × 10⁻⁵ mol dm⁻³.
	Calculate the pH of this buffer solution at 298 K. Give your answer to 2 decimal places.
	(Extra space)

(3)

	(Total 18 m	narl
	(Total To II	·
ia an	d ethylamine are examples of weak Brønsted–Lowry bases.	
Stat	e the meaning of the term <i>Brønsted–Lowry base</i> .	
(i)	Write an equation for the reaction of ethylamine (CH₃CH₂NH₂) with water to form a weakly alkaline solution.	
(ii)	In terms of this reaction, state why the solution formed is weakly alkaline.	
Stat	e which is the stronger base, ammonia or ethylamine. Explain your answer.	
	nger base	
	Stat	form a weakly alkaline solution. (ii) In terms of this reaction, state why the solution formed is weakly alkaline.

(Extra space)	(3)
	(3)
	(3)
	(3)
	(3)
(d) Give the formula of an organic compound that forms an alkaline buffer solution when added to a solution of ethylamine.	
	(1)
	(.,
 (e) Explain qualitatively how the buffer solution in part (d) maintains an almost constant pH when a small amount of hydrochloric acid is added to it. 	
pri unen a eman ameant er nyareeniene aeia ie aadea te it.	
(Extra space)	
	(2)
(Total 9 ma	rks)
Q3.When iron(II) sulfate is used for killing weeds in lawns, it is often mixed with the fertiliser ammonium sulfate. Ammonium sulfate also makes the soil acidic.	
(a) Write an equation to show how the ammonium ion behaves as a Brønsted–Lowry acid in water.	
	(1)

(b)	Compounds such as ammonium sulfate react on warming with sodium hydroxide
	solution as shown in the equation below.

$$(NH_4)_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2NH_3 + 2H_2O$$

Use this information to describe a simple test, other than smell, to show that ammonia is evolved. State what you would observe.

Test	
Observation	

(Total 3 marks)

Q4.In which one of the following reactions is the role of the reagent stated correctly?

	Reaction	Role of reagent	
Α	A $\text{TiO}_2 + 2\text{C} + 2\text{Cl}_2 \rightarrow \text{TiCl}_4 + 2\text{CO}$ TiO_2 is an oxidising agent		
В	B $HNO_3 + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4^ HNO_3$ is a Brønsted-Lowry		
С	CH₃COCI + AICI₃ → CH₃CO⁺ + AICI₄	AlCl₃ is a Lewis base	
D	2CO + 2NO → 2CO ₂ + N ₂	CO is a reducing agent	

(Total 1 mark)

Q5.

Summarised directions for recording responses to multiple completion questions				
A (i), (ii) and (iii) correct only	B (i) and (iii) correct only	C (ii) and (iv) correct only	D (iv) alone correct	

Brønsted-Lowry acid-base reactions include

(i) $OH^- + CH_3CI \rightarrow CH_3OH + CI^-$

(ii)
$$NH_3 + HCI \rightarrow NH_4^+ + CI^-$$

(iii) KF + PF₅
$$\rightarrow$$
 K⁺ + PF⁶

(iv)
$$H_2O + H_2O \rightarrow H_3O^+ + OH^-$$

(Total 1 mark)