M1 .(a)	Proton	dono	r or H⁺	donor Allow donator	1
	(b)	(i)	ΒB	Both need to be correct to score the mark	1
		(ii)	ΑA	Both need to be correct to score the mark	1
		(iii)	ΒA	Both need to be correct to score the mark	1
	(c)	M1	[H⁺] =	10 ^{-1.25} OR 0.05623	1
		M2	mol H	ICI = (25 × 10-₃) × 0.0850 (= 2.125 × 10-₃) Mark for Working	1
		М3	vol allow	$\left(=\frac{2.125 \times 10^{-3}}{0.05623}\right) = 0.0378 \text{ dm}^3 \text{ or } 37.8 \text{ cm}^3$ $= 0.0375 - 0.038 \text{ dm}^3 \text{ or } 37.5 - 38 \text{ cm}^3$ Units and answer tied	
				Ignore "vol added = 12.8 cm ³ " after correct answer	1

(d) (i) 4.52

[H+][H-]

(ii)
$$K_{s} = \begin{bmatrix} HX \end{bmatrix}$$
 ignore = $\begin{bmatrix} HX \end{bmatrix}$ but this may score M1 in (d)(iii)
Must have all brackets but allow () Allow HA etc
NO mark for 10^{-#*}
(iii) **M1** $K_{s} = \begin{bmatrix} H^{+} \\ HX \end{bmatrix}$ or with numbers
Allow [H] = $\sqrt{(Ka \times [HA])}$ for M1
M2 $\begin{bmatrix} H \\ H \end{bmatrix} = (\sqrt{(3.01 \times 10^{-s} \times 0.174)} = \sqrt{(5.24 \times 10^{-s})})$
 $= 2.29 \times 10^{-3} - 2.3 \times 10^{-3}$
Mark for answer
M3 pH = 2.64 (allow more than 2dp but not fewer)
Allow 1 for correct pH from their wrong [H-]
If square root forgotten, pH = 5.28 scores 2 for M1 and M3
M1 mol OH = $(10.0 \times 10^{-3}) \times 0.125 = 1.25 \times 10^{-3}$
Mark for answer
1

 $[H^+]^2$

M2 orig mol HX = $(15.0 \times 10^{-3}) \times 0.174 = 2.61 \times 10^{\times 3}$ Mark for answer

1

M3 mol HX in buffer = orig mol HX – mol OH-Mark for answer

= 2.61 × 10⁻³ – 1.25 × 10⁻³ = 1.36 × 10⁻³

PhysicsAndMathsTutor.com

(e)

Allow conseq on their (M2 - M1)

M4 mol X⁻ in buffer = mol OH⁻ =
$$1.25 \times 10^{-3}$$

$$([X-] = 1.25 \times 10^{-3}/25 \times 10^{-3} = 0.05)$$

May be scored in M5 expression

1

1

1

1

1

 $[H^{+}] \quad (= \frac{Ka \times [HX]}{[X^{-}]})$ $If use K_{a} = [H^{+}]^{2} \quad no \ further \ marks$

$$= \frac{3.01 \times 10^{-5} \times 1.36 \times 10^{-3}}{1.25 \times 10^{-3}} \text{ OR } \frac{3.01 \times 10^{-5} \times 0.0544}{0.05}$$

(= 3.27 × 10⁻⁵)

If either value of HX or X- used wrongly or expression upside down, no further marks

M6 pH = 4.48 or 4.49 (allow more than 2dp but not fewer) Do **not** allow M6 for correct calculation of pH using their [H⁺] - this only applies in (d)(iii) - apart from earlier AE

[18]

Proton acceptor **M2.**(a)

(b) (i) $CH_3CH_2NH_2 + H_2O \rightarrow CH_3CH_2NH_3^+ + OH^-$

allow eq with or without \implies allow C₂H₅NH₂ and C₂H₅NH₃⁺ (plus can be on N or H or 3) allow RHS as C₂H₅NH₃OH

1

	(ii)	Mark independently of (b)(i) <i>Allow</i> <i>Ethylamine is only partly/slightly dissociated</i> <i>OR</i> <i>Ethylamine is only partly/slightly ionized</i>	
		reaction/equilibrium lies to left or low [OH-] OR little OH- formed	
		OR little ethylamine has reacted Ignore "not fully dissociated" or "not fully ionized" Ignore reference to ionisation or dissociation of water	1
(c)	M 1	Ethylamine If wrong no marks in (c)	1
	M2	alkyl group is electron releasing/donating	
		OR alkyl group has (positive) inductive effect	1
	М3	increases electron density on N(H₂)	
		OR increased availability of <u>lp</u>	
		OR increases ability of <u>lp</u> (to accept H(+)) Mark M3 is independent of M2	1
(d)	CH₃(CH₂NH₃CI Or any amine hydrochloride	
	allow for C	v name (ethylammonium chloride or ethylamine hydrochloride) or other ha	alide
		or a strong organic acid	

NOT NH₄CI

1

(e) Mark independently of (d)

Extra H⁺ reacts with ethylamine or OH⁻

Or makes reference to Equilibrium (in (b)(i)) with amine on LHS

OR $CH_3CH_2NH_2 + H^+ \rightarrow CH_3CH_2NH_3^+$ **OR** $H^+ + OH^- \rightarrow H_2O$ Equilibrium shifts to RHS

 $\boldsymbol{\textit{OR}}\ \ ratio \ [CH_{3}CH_{2}NH_{3}^{\star}]/[\ CH_{3}CH_{2}NH_{2}]\ remains almost \ constant$

[9]

1

1

M3. (a)	$NH_4^+ \to$	$NH_3 + H^+$ Accept multiples. $Accept NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ Ignore state symbols, even if incorrect.	1
(b)	Test	indicator / conc HCl Do not accept 'smell'. Do not accept precipitation reactions of aqueous ammonia.	1
	Observ	vation colour for an alkali / white fumes If wrong test then lose second mark.	1 [3]

M4.D

M5.C

[1]