1. (i) The H⁺ ion in an (nitric) acid has been replaced by a metal ion **OR** by a Ca²⁺ ion \checkmark

DO NOT ALLOW it has been produced by the reaction of an acid and a base as this is stated in the question.

IGNORE references to replacement by NH_4^+ ions or positive ions. **ALLOW** H **OR** Hydrogen for H^+ ; **DO NOT ALLOW** Hydrogen atoms **ALLOW** Ca **OR** Calcium for Ca²⁺. **DO NOT ALLOW** Calcium atoms **ALLOW** 'metal' for 'metal ion

(ii) $2HNO_3(aq) + Ca(OH)_2(aq) \rightarrow Ca(NO_3)_2 (aq) + 2H_2O(l)$ Formulae \checkmark Balance AND states \checkmark *ALLOW multiples ALLOW (aq) OR (s) for Ca(OH)*₂

2

1

1

1

1

(iii) Accepts a proton OR accepts $H^+ \checkmark$

ALLOW $H^+ + OH^- \rightarrow H_2O$ ALLOW OH^- reacts with H^+ OR OH^- takes H^+ ALLOW OH^- 'attracts' H^+ if 'to form water' is seen DO NOT ALLOW OH^- neutralises H^+ ('neutralises' is in the question)

[4]

2. (a) (i) Calculate correctly $\frac{0.0880 \times 25.0}{1000} = 2.20 \times 10^{-3} \text{ mol}$

OR 0.00220 mol \checkmark *ALLOW* 0.0022 **OR** 2.2 × 10⁻³ mol

(ii) Calculates correctly
$$\frac{0.00220}{2} = 1.10 \times 10^{-3}$$
 mol

OR 0.00110 mol ✓

ALLOW 0.0011 **OR** 1.1×10^{-3} mol **ALLOW** ECF for answer (i)/2 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

 $\frac{0.00110 \times 1000}{0.0625} = 0.0625 \text{ mol dm}^{-3}$ (iii) 17.60 **OR** $6.25 \times 10^{-2} \text{ mol dm}^{-3} \checkmark$ **ALLOW** 0.063 **OR** 6.3×10^{-2} mol dm⁻³ **ALLOW** ECF for answer (ii) \times 1000/17.60 **O**R ECF from (i) for answer (i)/ $2 \times 1000/17.60$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes 1 (The number of) Water(s) of crystallisation \checkmark (i) IGNORE hydrated OR hydrous 1 (ii) 142.1 🗸 ALLOW 142 ALLOW M_r expressed as a sum **ALLOW** ECF from incorrect M_r and x is calculated correctly (3221 1 1 421)

$$x = \frac{(322.1 - 142.1)}{18.0} = 10 \checkmark$$

ALLOW ECF values of x from nearest whole number to calculator value ALLOW 2 marks if final answer is 10 without any working

[6]

2

1

1

3. (i) $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4 \checkmark$ $ALLOW 2NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + 2H_2O$ $ALLOW NH_3 + H^+ \rightarrow NH_4^+$ ALLOW any correct multiple IGNORE state symbols

(ii) when the H⁺ in an acid is replaced by a metal ion OR an ammonium ion OR a + ion ✓ *ALLOW H for H⁺; ALLOW 'metal' for 'metal ion' i.e.: H in an acid can be replaced by a metal*

(b)

(iii) accepts a proton **OR** accepts $H^+ \checkmark$ *ALLOW* donates a lone pair *ALLOW* removes H^+ *ALLOW* forms OH⁻ ions

(iv) 132.1 ✓
IGNORE units
NO OTHER ACCEPTABLE ANSWER

4. (i)
$$M(MgSO_4) = 120.4 \text{ OR } 120 (g \text{ mol}^{-1}) \checkmark$$

mol MgSO₄ =
$$\frac{1.51}{120.4}$$
 = 0.0125 mol \checkmark
ALLOW 0.013 up to calculator value of 0.012541528 correctly
rounded (from $M = 120.4 \text{ g mol}^{-1}$)
ALLOW 0.013 up to calculator value of 0.012583333 correctly
rounded (from $M = 120 \text{ g mol}^{-1}$)
ALLOW ecf from incorrect M i.e. $1.51 \div M$

(ii)
$$\frac{1.57}{18.0} = 0.0872(2) \text{ (mol) } \checkmark$$

ALLOW 0.09 up to calculator value of 0.08722222

(iii)
$$\times = 7 \checkmark$$

ALLOW ecf i.e. answer to (ii) \div answer to (i) **ALLOW** correctly calculated answer from 1 significant figure up to calculator value, ie, \times does not have to be a whole number. Likely response = 6.95 \checkmark

[4]

5. (i) Ca(OH)₂ ✓

IGNORE charges, even if wrong

[4]

1

1

2

1

1

1

(ii) Ca(NO₃)₂ ✓ *IGNORE* charges, even if wrong

[2]

1

6.	(i)	Molar mass of $CaCO_3 = 100.1 \text{ g mol}^{-1}$ (1) 2.68/100.1 = 0.0268/0.027 (1)	2	
	(ii)	$0.0268 \text{ mol} \times 24,000 = 643 \text{ cm}^3$ (1)	1	
	(iii)	moles $HNO_3 = 2 \times 0.0268$ = 0.0536 /0.054 mol (1) (<i>i.e. answer to (i) × 2</i>)		
		volume of $HNO_3 = 0.0536 \times 1000/2.50 = 21.4 \text{ cm}^3$ (1)	2	[5]

7.	(i)		MgO has reacted with $CO_2 \checkmark 1$	
	(ii)	Solid dissolves / disappears \checkmark Fizzing / bubbles \checkmark MgO + 2HCl \rightarrow MgCl ₂ + H ₂ O \checkmark	2	
		$MgCO_3 + 2HCl \rightarrow MgCl_2 + CO_2 + H_2O\checkmark$ both reactions form magnesium chloride/MgCl ₂ \checkmark	3	[6]

8.	(i)	$CaCO_3 (s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O (l)$		
		$CaO(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l)$		
		each balanced equation 1 mark (2)		
		all state symbols (1)	3	
	(ii)	CaCO ₃ fizzes/ gas given off/ gas evolved / carbon dioxide evolved (1)	1	
				[4]

9.	(i)	a proton donor 🖌	1
	(ii)	$MgO + 2HCl \rightarrow MgCl_2 + H_2O \checkmark$	1
			[2]

100	(or $CaCO_3 + HCl$ in an equation)			
		$O_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2 \checkmark$ ect equation would score both marks)		[2]
11.	(i)	as a base (1) accepts a proton/H+/ neutralises an acid/ reacts with acid to form salt/ has a lone pair of electrons (1)	2	
	(ii)	fertiliser (1)	1	
	(iii)	manufacture of explosives/ dyes/ nitric acid/ fibres/ ammonium nitrate/ urea/ refrigeration/ cleaning agents/ fertiliser (if not allowed in (ii) (1)	1	[4]
12.	(i)	fizzing/gas/hydrogen evolved <i>or</i> Mg dissolves/disappears ✓ [an incorrect observation negates this mark]	1	
	(ii)	$2HCl + Mg \rightarrow MgCl_2 + H_2$		
		[correct formula for MgCl ₂ . Allow equation with HI/MgI ₂ instead of HCl] \checkmark		
		[balancing: e.g. $2\text{HC}l + 2\text{Mg} \rightarrow 2\text{MgC}l + \text{H}_2$ will get this mark but not the 1^{st}] \checkmark	2	[3]

13. No mark scheme available

CaCO₃ reacts with (or neutralises) HCl \checkmark

10.

14. No mark scheme available