Q1 .(a)	Use data from the table below to explain why dilute hydrochloric acid cannot be used
	to acidify potassium manganate(VII) in a titration.

	<i>E</i> ⊕ / V
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(I)$	+1.51
$Cl_2(aq) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(aq)$	0.00
Use information from the table in part (a) to determine the f 0.500 mol dm ⁻³ sulfuric acid that is required for a titre of m ⁻³ potassium manganate(VII) solution. Show your working.	

- (c) In each titration using potassium manganate(VII), a large excess of dilute sulfuric acid is used to avoid any possibility of the brown solid MnO₂ forming.
 - (i) Deduce a half-equation for the reduction of MnO_4^- ions in acidic solution to form MnO_2 .

(3)

(b)

			(1)
	(ii)	Give two reasons why it is essential to avoid this reaction in a titration between potassium manganate(VII) and iron(II) ions.	
			(2)
(d)	Sug	assium manganate(VII) is an oxidising agent. gest one reason why a 0.0200 mol dm ⁻³ solution of potassium manganate(VII) s not need to be kept away from flammable material.	
			(4)
		(Total 9 m	(1) arks

Q2.The table below shows some standard electrode potentials.

			<i>E</i> ⊕ / V
 MnO₄⁻ + 8H⁺ + 5e⁻	→	Mn ²⁺ + 4H ₂ O	+1.51
Cl ₂ (g) + 2e ⁻	\longrightarrow	2Cl⁻(aq)	+1.36
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	\longrightarrow	2Cr³+ + 7H₂O	+1.33

A student determined the concentration of iron(II) ions in a solution of iron(II) chloride by titration with acidified potassium dichromate(VI) solution. A second student titrated the same solution of iron(II) chloride with acidified potassium manganate(VII) solution. By reference to the table, explain why the second student obtained a greater value for the concentration of iron(II) ions.

	(T.1.10
	(Total 2 mari
(a) A siı	Lithium ion cells are used to power cameras and mobile phones. mplified representation of a cell is shown below.
	Li Li ⁺ Li ⁺ , CoO ₂ LiCoO ₂ Pt
med	reagents in the cell are absorbed onto powdered graphite that acts as a support ium. The support medium allows the ions to react in the absence of a solvent as water.
The follo	half-equation for the reaction at the positive electrode can be represented as ws.
	$Li^+ + CoO_2 + e^- \longrightarrow Li^+[CoO_2]^-$
(i)	Identify the element that undergoes a change in oxidation state at the positive electrode and deduce these oxidation states of the element.
	Element
	Oxidation state 1
	Oxidation state 2
(ii)	Write a half-equation for the reaction at the negative electrode during operation of the lithium ion cell.
(iii)	Suggest two properties of platinum that make it suitable for use as an external electrical contact in the cell.
	Property 1
	Property 2

Q3.

	(iv)	Suggest one reason why water is not used as a solvent in this cell.	
			(1)
(b)		half-equations for two electrodes used to make an electrochemical cell are wn below.	
		$CIO_3^-(aq) + 6H^+(aq) + 6e^- \longrightarrow CI^-(aq) + 3H_2O(I)$ $E^0 = +1.45 \text{ V}$	
		SO_4^2 -(aq) + 2H ⁺ (aq) + 2e ⁻ \longrightarrow SO_3^2 -(aq) + H ₂ O(I) E^0 = +0.17 V	
	(i)	Write the conventional representation for the cell using platinum contacts.	
			(2)
	(ii)	Write an overall equation for the cell reaction and identify the oxidising and reducing agents.	
		Overall equation	

Oxidising agent

Reducing agent

. (3) (Total 12 marks)

_	FeSO ₄ (aq)
(a)	Identify solution A and give its concentration. State the other essential conditions for the operation of the standard electrode that forms the left-hand side of the cell.
	Solution A
	Conditions
(b)	Identify the material from which electrodes B are made. Give two reasons why this material is suitable for its purpose.
	Material
	Reason 1
	Reason 2

(3)

(3)

(c) Identify a solution that could be used in **C** to complete the circuit. Give **two** reasons why this solution is suitable for its purpose.

Solution	
Reason 1	
1.000011	

	Rea	son 2	
			(3)
(d)	Writ	te the conventional representation for this cell.	
			(1)
(e)	The	voltmeter V shown in the diagram of the cell was replaced by an ammeter.	
	(i)	Write an equation for the overall cell reaction that would occur.	
			(1)
	(ii)	Explain why the ammeter reading would fall to zero after a time.	
		(Total 12	(1) marks)

Q5.Redox reactions occur in the discharge of all electrochemical cells. Some of these cells are of commercial value.

The table below shows some redox half-equations and standard electrode potentials.

Half-equation	E/V
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.76

$Ag_2O(s) + 2H^{-}(aq) + 2e \longrightarrow 2Ag(s) + H_2O(I)$	+0.34
$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(I)$	+1.23
$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.87

(a)	In terms of electrons, state what happens to a reducing agent in a redox reaction.	
		(1)
(b)	Use the table above to identify the strongest reducing agent from the species in the table.	
	Explain how you deduced your answer.	
	Strongest reducing agent	
	Explanation	
		(2)
		(=)
(c)	Use data from the table to explain why fluorine reacts with water.	
	Write an equation for the reaction that occurs.	
	Explanation	
	Equation	
		(3)

- (d) An electrochemical cell can be constructed using a zinc electrode and an electrode in which silver is in contact with silver oxide. This cell can be used to power electronic devices.
 - (i) Give the conventional representation for this cell.

(ii)	Calculate the e.m.f. of the cell.	
(iii)	Suggest one reason why the cell cannot be electrically rec	harged.
(iii) Suggest of the cell is (i) The PbO ₂ (s) + 3h PbSO (i) The PbO ₂ the cell is Use this in half-equate the cell is Write an erecharged	electrode half-equations in a lead-acid cell are shown in the	1
	Half-equation	<i>E</i> / V
P	$bO_2(s) + 3H^{+}(aq) + HSO_4^{-}(aq) + 2e^{-} \longrightarrow PbSO_4(s) + 2H_2O(l)$	+1.69
	$PbSO_{4}(s) + H^{+}(aq) + 2e^{-} \longrightarrow Pb(s) + HSO_{4}^{-}(aq)$	to be calculated
(i)	The PbO ₂ /PbSO ₄ electrode is the positive terminal of the ce the cell is 2.15 V. Use this information to calculate the missing electrode potentialf-equation shown in the table.	ntial for the
(ii)	A lead–acid cell can be recharged.	
	Write an equation for the overall reaction that occurs when recharged.	_

(2)

(f) The diagrams below show how the e.m.f. of each of two cells changes with time when each cell is used to provide an electric current.

(i)	Give one reason why the e.m.f. of the lead-acid cell changes after several
	hours.

(1)

(ii)	Identify the type of cell that behaves like cell X .	
		(1)
		('')

(iii)	Explain why the voltage remains constant in cell X .

(Extra space)		

(Total 17 marks)

Q6.Some electrode potentials are shown in the table below. These values are **not** listed in numerical order.

Electrode half-equation	<i>E</i> ∘ / V
Cl ₂ (aq) + 2e ⁻ > 2Cl ⁻ (aq)	+1.36
2HOCl(aq) + 2H⁺(aq) + 2e⁻ → Cl₂(aq) + 2H₂O(I)	+1.64
$H_2O_2(aq) + 2H^*(aq) + 2e^- \longrightarrow 2H_2O(I)$	+1.77
$O_2(g) + 2H^{+}(aq) + 2e^{-} \longrightarrow H_2O_2(aq)$	+0.68
$O_2(g) + 4H^*(aq) + 4e^- \longrightarrow 2H_2O(I)$	+1.23

(a)	Identify the most powerful reducing agent from all the species in the table.	
		(1)
(b)	Use data from the table to explain why chlorine should undergo a redox reaction with water. Write an equation for this reaction.	
	Explanation	
	Equation	

(2)

(1)

(c)	Suggest one reason why the redox reaction between chlorine and water does not normally occur in the absence of light.

(a)	states what happens to hydrogen peroxide when it is reduced.	
		(2)
, ,		
(e)	Use data from the table to explain why one molecule of hydrogen peroxide can oxidise another molecule of hydrogen peroxide. Write an equation for the redox reaction that occurs.	
	Explanation	
	Equation	
		(2)
	(Total 8 ma	