
Q1.The following cell has an EMF of +0.46 V.

Which statement is correct about the operation of the cell?

Q2.In this question consider the data below.

	E → / ∨
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13

The e.m.f. of the cell $Ag(s) | Ag^{+}(aq) | | Pb^{2+}(aq) | Pb(s)$ is

A 0.93 V

B 0.67 V

- **C** -0.67 V
- **D** -0.93 V

Q3.In this question consider the data below.

	Ĕ / ∨
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$2H^{*}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13

The e.m.f. of the cell $Pt(s) | H_2(g) | H^*(aq) | | Ag^*(aq) | Ag(s)$ would be increased by

- A increasing the concentration of H⁺(aq).
- **B** increasing the surface area of the Pt electrode.
- **C** increasing the concentration of Ag⁺(aq).
- **D** decreasing the pressure of $H_2(g)$.

Q4.A disproportionation reaction occurs when a species **M**⁺ spontaneously undergoes simultaneous oxidation and reduction.

 $2M^{+}(aq) \rightarrow M^{2+}(aq) + M(s)$

The table below contains $E \oplus$ data for copper and mercury species.

	E ⊖/ V
Cu²+(aq) + e⁻ → Cu⁺(aq)	+ 0.15
Cu⁺(aq) + e⁻ → Cu(s)	+ 0.52
Hg²⁺(aq) + e⁻ → Hg⁺(aq)	+ 0.91
Hg⁺(aq) + e⁻ → Hg(l)	+ 0.80

Using these data, which one of the following can be predicted?

- A Both Cu(I) and Hg(I) undergo disproportionation.
- **B** Only Cu(I) undergoes disproportionation.
- **C** Only Hg(I) undergoes disproportionation.
- **D** Neither Cu(I) nor Hg(I) undergoes disproportionation.

Q5.

$$Cr_{2}O_{7}^{2-} (aq) + 14H^{*}(aq) + 6e^{-} \rightarrow 2Cr^{3*}(aq) + 7H_{2}O(I) \qquad E^{•} = +1.33 \vee Br_{2}(aq) + 2e^{-} \rightarrow 2Br^{-}(aq) \qquad E^{•} = +1.09 \vee E^{•} = +1.09 \vee E^{-} = +0.77 \vee E^{-} = +0.77 \vee V^{-} = +0.77 \vee V^{-} = +0.34 \vee V^{-} = +0.34 \vee SO_{4}^{2-} (aq) + 4H^{*}(aq) + 2e^{-} \rightarrow H_{2}SO_{3}(aq) + H_{2}O(I) \qquad E^{•} = +0.17 \vee E^{-} = +0.17 \vee E^{-}$$

Based on the above data, which one of the following could reduce 0.012 mol of bromine to bromide ions?

A 40 cm³ of a 0.10 mol dm⁻³ solution of $Cr_2O_7^{2-}$ (aq)

- **B** 80 cm³ of a 0.30 mol dm⁻³ solution of Fe³⁺(aq)
- C 50 cm³ of a 0.24 mol dm⁻³ solution of V³⁺(aq)
- C 50 cm³ of a 0.24 mol dm⁻³ solution of H₂SO₃(aq)

Q6.Use the data in the table below to answer this question.

	E ∕ V
	+ 1.52
$Cr_2O^{2-}_7$ (aq) + 14H ⁺ (aq) + 6e ⁻ → 2Cr ³⁺ (aq) + 7H ₂ O(I)	+ 1.33
Fe³∗(aq) + e⁻ → Fe²∗(aq)	+ 0.77
$Cr^{3+}(aq) + e^{-} \rightarrow Cr^{2+}(aq)$	- 0.41
Zn²+(aq) + 2e ⁻ → Zn(s)	- 0.76

The most powerful oxidising agent in the table is

- A Mn²⁺(aq)
- B Zn(s)
- C MnO4(aq)
- D Zn²⁺(aq)

Q7.Use the data in the table below to answer this question.

	<i>E</i>
	+ 1.52
$\operatorname{Cr}_{2}\operatorname{O7}^{2-}(\operatorname{aq}) + 14\operatorname{H}^{+}(\operatorname{aq}) + 6e^{-} \rightarrow 2\operatorname{Cr}^{3+}(\operatorname{aq}) + 7\operatorname{H}_{2}\operatorname{O}(I)$	+ 1.33
Fe³+(aq) + e⁻ → Fe²+(aq)	+ 0.77
Cr³+(aq) + e⁻ → Cr²+(aq)	- 0.41
Zn²⁺(aq) + 2e⁻ → Zn(s)	- 0.76

Which one of the following statements is **not** correct?

- **A** $Fe^{2*}(aq)$ can reduce acidified MnO $\overline{4}(aq)$ to Mn^{2*}(aq)
- **B** $\operatorname{CrO}_{7}^{2-}(\operatorname{aq})$ can oxidise acidified $\operatorname{Fe}^{2+}(\operatorname{aq})$ to $\operatorname{Fe}^{3+}(\operatorname{aq})$
- **C** Zn(s) can reduce acidified $Cr_2 O_7^{2-}$ (aq) to Cr^{2+} (aq)
- **D** Fe²⁺(aq) can reduce acidified $Cr^{3+}(aq)$ to $Cr^{2+}(aq)$