M1.

(a)

(b) (i) reducing species: Fe²⁺ 1 (ii) oxidising species: $Cl_2;$ 1 (c) standard electrode potential 1.25 V; (i) 1 equation: $TI^{3+} + 2 Fe^{2+} \rightarrow 2Fe^{3+} + TI + balanced;$ (ii) 1 correct direction; 1 (d) moles $KMnO_4 = 16.2 \times 0.0200 \times 10^{-3} = 3.24 \times 10^{-4}$; (i) 1 moles H_2O_2 = Moles KMnO₄ × 5 / 2 = 8.10 × ⁻⁴; 1 8.10 × 10⁻⁴ moles H₂O₂ in 25 cm³ 8.10 × 10⁻⁴ × 1000 / 25 in 1000 cm³ = 0.0324 mol dm⁻³; 1 hence g dm⁻³ = mol dm⁻³ × M_r = 0.0324 × 34 = 1.10; (penalise use of an incorrect H_2O_2 to $KMnO_4$ ratio by two marks) 1 (ii) PV = nRT;1 hence V = nRT / P= 8.10 × 10⁻⁴× 8.31 × 298/98000; 1 = 2.05 × 10^{-₅};

1

1

units m³;

(mark consequentially to answers in (c)(i)) (allow correct answers with other units) (answers to (c)(i) and (ii) must be to 3 significant figures; penalise once only)

[14]

1

M2.

(a)

Cell e.m.f.: 1.93 (v) CE if negative value given (1) Half equation: Mg \rightarrow Mg²⁺ + 2 e⁻ (1)

> or < Ignore state symbols Mark on after an AE

> > 2

3

2

(b) Change in e.m.f.: increases (1) Mark on even if incorrect

Explanation: Equilibrium displaced to Mg²⁺ or to the left (1)

cell reaction or overall reaction goes to the right Electrode is more negative or E decreases or gives more electron or forms more Mg²⁺ ions Mark separately

(c) Cell e.m.f. : -0.84 (V) (1)

> Explanation: Fe is giving electrons or forming Fe²⁺ or reaction goes in the reverse direction (1) Mark on after AE

> > N.B. In (a) and (c) mark on if no value given, but CE in both (a) and (c) if e.m.f. = 0

[7]

- (b) (i) To allow transfer of electrons / provide a reaction surface (1)
 - (ii) 298 K (1) <u>Both F³⁺ (aq) and Fe²⁺ (aq)</u> have a concentration of 1 mol dm⁻³ (1) (QoL) OR [H⁺] = 1 mol dm⁻³ *NOT zero current or 100 kPa*
- (c) +1.34 V (1) 2 MnO₄⁻ + 5 H₂SO₃ \rightarrow 2 Mn²⁺ + 5 SO₄²⁻ + 3 H₂O +4 H⁺ Correct species / order (1) Balanced and cancelled (1) *Allow one for 2 MnO₄⁻* + 5 H₂SO₃ \rightarrow 2 Mn²⁺ + 5 SO₄²⁻
- (d) (i) Ce⁴⁺ (aq) (1)
 - (ii) VO₂⁺ (aq) (1); Cl₂ (1)
 Penalise additional answers to zero
- (e) Pt | Fe²⁺ (aq), Fe³⁺ (aq) || Ce⁴⁺(aq), Ce³⁺ (aq) | Pt Correct species (1) Correct order (1)
 Deduct one mark for each error

M4.D

M5.C

[1]

[12]

1

3

3

3

2

[1]

2

3

4

[1]

M7. (a) Hydrogen ion concentration: 1.00 mol dm⁻³ (1)
Hydrogen gas pressure: 100 kPa (1)

(b) *Explanation of change*: Equilibrium displaced to left (1) to reduce constraint (1)

Change in electrode potential: Becomes negative or decreases (1) allow more negative

(c) (i) 0.43V (1)

(ii) Half-equation: $2Br \rightarrow Br_2 + 2e^-$ (1)

Overall equation: $2BrO_3^- + 10Br^- + 12H^+ \rightarrow 6Br_2 + 6H_2O$ (2) or $BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$ species (1) balanced (1)

[9]

M8.D

M9.B

PhysicsAndMathsTutor.com