M1. (a) Hydrogen/H₂ gas/bubbles 1 1.0 mol dm⁻³ HCl/H⁺ 1 At 298K and 100kPa Allow 1 bar instead of 100 kPa Do not allow 1 atm 1 Pt (electrode) 1 (b) $Li^+ + MnO_2 + e^- \rightarrow LiMnO_2$ Ignore state symbols 1 -0.13(V)1 Fe³⁺ ions reduced to Fe²⁺ (c) Can score from equation/scheme 1 Because $E(Fe^{3+}(/Fe^{2+})) > E(H^+/H_2)/E(hydrogen)$ Allow emf/E_{cell} +ve/0.77V Allow Fe³⁺ better oxidising agent than H⁺ Allow H₂ better reducing agent than Fe²⁺ Only award this explanation mark if previous mark given 1 Moles $Cr_2O_7^{2-} = 23.7 \times 0.01/1000 = 2.37 \times 10^{-4}$ (d) 1 1 mol Cr₂O₇²⁻ reacts with 6 mol Fe²⁺ so moles Fe²⁺ in 25 cm³ = $6 \times 2.37 \times 10^{-4} = 1.422 \times 10^{-3}$ 1 $M1 \times 6$ Moles Fe²⁺ in 250 cm³ = 1.422×10^{-2} $M2 \times 10 \text{ or } M4/10$ 1 Original moles $Fe^{2+} = 10.00/277.9 = 0.0360$

Independent mark

Moles Fe²⁺ oxidised = 0.0360 - 0.0142 = 0.0218M4 - M3

1

1

1

% oxidised = $(0.0218 \times 100)/0.0360 = 60.5\%$

(M5 × 100)/M4 Allow 60 to 61 Note Max 3 if mol ratio for M2 wrong eg 1:5 gives 67.1% 1:1 gives 93.4%

[14]

Note also, 39.5% (39-40) scores M1, M2, M3 and M4 (4 marks)

M2.D

[1]

M3. (a) 1.4 V

Allow + or -

1

(b) 2NiO(OH) + 2H₂O + Cd → 2Ni(OH)₂ + Cd(OH)₂

Mark for species, Deduct a mark for additional species (eg OH) but allow balance mark

1

Balanced

If equation is reversed CE=0

1

(c) NiO(OH) or Ni(III) or nickel

1

+3

Page 3

1

1

(ii) $Hg^{2+} + 2e^- \rightarrow Hg$

1

(iii) $2H_2O + SO_2 \rightarrow H_2SO_4 + 2e^- etc$

1

(iv) $Cl_2 + 2e^- \rightarrow 2Cl^-$

1

(b) (i) Vanadium species: VO₂⁺

1

Oxidation state: 5

1

Half-equation: $V^{2+} + 2H_2O \rightarrow VO_2^+ + 4H^+ + 3e^-$

1

(ii) Cell e.m.f 0.06 V

1

Change in e.m.f, Increases

1

More Fe³⁺ ions to accept electrons

1

Fe³⁺/Fe²⁺ electrode becomes more positive

1

(c) (i)
$$2H_2 \rightarrow 4H^+ + 4e^-$$

1

$$4e^- + O_2 + 2H_2O \rightarrow 4OH^-$$

1

Overall equation $2H_2 + O_2 \rightarrow 2H_2O$

(ii) Unchanged

1

(d) Economic disadvantage; Use of CH4 or cost of producing or high temp

1

1

1

Environmental disadvantage; Makes CO₂

[17]

(e) Cost of manufacture of solar cells

M5. (a) (i) 0.60 V

1

(ii) $H_2O + H_2SO_3 \rightarrow SO_4^2 + 4H^+ + 2e^-$

1

(b) (i) $2IO_3^- + 2H^+ 5H_2O_2 \rightarrow 5O_2 + I_2 + 6H_2O$ Species

1

Balanced

1

(ii) The concentration of the ions change or are no longer standard or the e.m.f is determined when no current flows

1

(iii) Unchanged

1

(iv) Increased

1

Equilibrium ${}^{\mathrm{IO_3^-/I_2}}$ displaced to the right

Electrons more readily accepted or more reduction occurs or electrode becomes more positive (Q o L)

1

1

1

1

5 or V

 $V^{2+} + 2H_2O \rightarrow VO_2^+ + 4H^+ 3e^-$

1 [12]

M6. (a) (i) Fe^{2+}

(ii) F_2O

(iii) Fe²⁺

CI-

Use list principle if more than two answers

(b) (i) e.m.f. = E(rhs) - E(lhs)

= 1.52 – 0.77 = 0.75 (0.75 scores first mark also)

(ii) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$

(iii) Decrease (Increase is CE, no further marks) Equilibrium (or reaction) shifts to R (or L if refers to half equation in table) (or in favour of more Fe³+) (or more Fe³+ formed) (or more electrons formed)

Electrode potential (for Fe³+/Fe²+) less positive (or decreases)

[10]