M1.(a) Manganate would oxidise / react with Cl-

1

Because E° for MnO₄⁻ is more positive than that for Cl² / 1.51 – 1.36 = +0.15 (V)

Must refer to data from the table for M2.

1

(b) Moles of H⁺ = $25 \times 0.0200 \times 8 / 1000 = 4.00 \times 10^{-3}$

1

Moles of $H_2SO_4 = 2.00 \times 10^{-3} (4.00 \times 10^{-3} / 2)$ Allow consequential marking on incorrect moles of H^+

1

Volume $H_2SO_4 = 4.00 \text{ (cm}^3) (2.00 \times 10^{-3} \times 1000 / 0.500)$

Allow consequential marking on incorrect moles of H₂SO₄

Accept 4 cm³.

8 cm3 scores 2 marks.

Do not penalise precision.

Correct answer without working scores M3 only.

1

(c) (i) $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$ Allow multiples, including fractions. Ignore state symbols.

1

(ii) Can't see end point due to brown colour

1

Larger titre (than expected)

Allow the idea that with two reactions can't make use of titre in calculations.

					1	
((d) Sc	olution	(very) dilute / lots of water		1	[9]
M2. Mn	O₄ ⁻ will c	oxidise	the <u>chloride</u> ion / reaction of MnO ₄ ⁻ and Cl ⁻ feasible Accept converse argument with Cr ₂ O ₇ ² Accept calculations of overall E° values.		1	
L	arger vo	olume I	needed		1	[2]
М3.	(a)	(i) (+) -		1 1		
	(ii)	Li –	→ Li ⁻ + e ⁻ <i>Ignore state symbols</i>			

Do not allow 'an inaccurate result' without qualification.

1

1

Allow e without -ve sign

Platinum is a conductor

Do not allow equilibrium sign

(iii)

		(Platinum is) unreactive/inert Ignore mention of surface area or catalyst Allow 2 marks if two properties given on one answer line Apply list principle to contradictions/wrong answers Do not allow platinum resists corrosion	1	
	(iv)	<u>Li</u> reacts with <u>water</u> /forms lithium hydroxide Allow water breaks down (or is electrolysed) on re-charge	1	
(b)	(i)	Pt SO ₃ ²⁻ (aq), SO ₄ ²⁻ (aq) ClO ₃ ⁻ (aq), Cl ⁻ (aq) Pt State symbols an ',' not necessary Allow in place of ',' NOT ',' in place of Ignore H ⁻ and H ₂ O Deduct one mark for each mistake (e.g. Pt missed twice counts as two mistakes) Allow reverse order for whole cell Pt Cl ⁻ , ClO ₃ ⁻ SO ₄ ²⁻ , SO ₃ ²⁻ Pt	2	
	(ii)	$ClO_{3}^{-} + 3SO_{3}^{2-} \rightarrow Cl^{-} + 3SO_{4}^{2-}$	1	
		Oxidising agent ClO₃⁻	1	
		Reducing agent SO ₃ ²⁻	1	[12]
ue.				
HCI 1.	U mol	dm³ Allow H₂SO₄ 0.5 mol dm³ Allow HNO₃ 1.0 mol dm³ Allow name or formula Concentration can be given after "conditions"	1	

M4.(a)

	(Hydrogen at) 100kPa / 1 bar	1
	298 K	1
(b)	Pt / Platinum Mark on if no answer for M1 If wrong answer for M1, only mark on if electrode is Au, Ag, Pb or Ti	1
	Inert / unreactive / does not create a potential difference	1
	Conducts electricity / allows electron flow / conducts / conductor	1
(c)	KCI Allow NaCl, KNO₃, Na₂SO₄ etc NOT NH₄Cl	1
	Does not react with either electrode / solution in electrode Allow unreactive / inert	1
	Ions can move Allow conducts electricity / electrical connection / carries charge Do not allow just connects / completes the circuit Do not allow conducts / carries electrons Mark these independently	1

(d) $Pt|H_2|H^+||Fe^{3+},Fe^{2+}|Pt$ Ignore state symbols Order must be correct | must be correct but allow | instead of , separating Fe³⁺ from Fe2+ Allow, instead of | separating H₂ and H⁴ 1 $2Fe^{3+} + H_2 \rightarrow 2Fe^{2+} + 2H^{+}$ (e) (i) Allow multiples 1 (ii) The Fe3+ ions would be used up / reaction completed Answer must relate to reactants in (e)(i) equation if given Allow reactant / reactants used up Do not allow concentration of Fe³⁺ decreases Allow concentration of Fe³⁺ falls to zero 1 **M5.**(a) loses electrons / donates electrons penalise donates electron pair 1 (b) Zn 1 (most) negative E° / lowest E° / least positive can only score M2 if M1 correct do not allow e.m.f instead of E° 1 $\underline{\mathsf{E}^\circ\mathsf{F}_2}$ (/F⁻) > $\underline{\mathsf{E}^\circ\mathsf{O}_2}$ (/H₂O) (c) or e.m.f is positive or e.m.f = 1.64 V 1 Fluorine reacts to form oxygen (can score from equation in M3 even if equation unbalanced provided no contradiction)

[12]

or fluorine is a more powerful oxidising agent than oxygen

or fluorine oxidises water

 $2F_2 + 2H_2O \rightarrow 4F^- + 4H^+ + O_2$ allow 4HF in equation
balanced equation scores M2 and M3

1

(d) (i) order correct Zn Zn²⁺ Ag₂O Ag or reverse of this order ignore ss, H⁺ and H₂O, no. of moles

1

all phase boundaries correct allow $Zn|Zn^{2+}||Ag_2O,Ag$ or $Zn|Zn^{2+}||Ag_2O|H^+|Ag$ for M1 & M2

e.g. Zn|Zn²+||Ag₂O|Ag or Ag|Ag₂O||Zn²+|Zn scores 2 M2 cannot be gained unless M1 scored allow H+ either side of Ag₂O with comma or | for M2 penalise

- wrong phase boundary (allow dashed lines for salt bridge)
- Pt
- use of + (from half equation)
- water/H⁺ outside Ag in Ag electrode

1

(ii) 1.1 (V)

Allow no units, penalise wrong units allow correct answer even if no answer to (d)(i) or answer to (d)(i) incorrect allow -1.1 if silver electrode on Left in (d)(i) even if the

1

- species are in the wrong order.
- (iii) Reaction(s) not reversible or H₂O electrolyses

 do not allow hard to reverse

 mention of primary cell is not enough to show that reaction(s)

 are irreversible

1

(e) (i) -0.46 (V)

Allow no units, penalise wrong units

1

(ii) $2PbSO_4 + 2H_2O \rightarrow Pb + PbO_2 + 2HSO_4^- + 2H^+$ lead species correct on correct sides of equation 1 equation balanced and includes H₂O, HSO₄ and H+ (or H₂SO₄) allow ions / species must be fully cancelled out or combined allow 1/2 for balanced reverse equation 1 (f) (i) reagents / PbO₂ / H₂SO₄ /acid / ions used up (or concentration decreases) 1 (ii) fuel cell Ignore any other words 1 (iii) reagents / fuel supplied continuously 1 concentrations (of reagents) remain constant

1

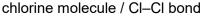
1

1

1

[17]

M6.(a) H_2O_2


Ignore state symbols

 $E \circ Cl_2/Cl_2 > E \circ O_2/H_2O$ (b) Allow potential for chlorine/Cl₂ greater than for oxygen/O₂ Allow 1.36 > 1.23 / E cell = 0.13

 $CI_2 + H_2O \rightarrow 2CI^- + 1/2O_2 + 2H^+$ Allow multiples Allow + HCI

(c) Activation energy is high / light/UV provides the activation energy / light breaks

Page 8

If light used to break CI–Cl bond award 1 mark and ignore product e.g. CI

1

(d) O(-1) (in H_2O_2)

Must give oxidation state of O in $H_2O_2 = -1$

1

Changes to O(-2) (in water)

Must give oxidation state of O in water = -2CE = 0/2 if refers to oxidation state of H changing

1

(e) $E \circ H_2O_2/H_2O > E \circ O_2/H_2O_2$

Allow stated in words Allow 1.77 > 0.68 / E cell = 1.09

1

 $2H_2O_2 \rightarrow O_2 + 2H_2O$

Allow multiples

H⁺ and e⁻ must be cancelled

1

[8]