M1.(a)	$Zn(s) \rightarrow Zn^{2*}(aq) + 2e^{-}$ If equations reversed, allow M1 only.	1
	$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ Ignore state symbols.	1
(b)	Moles of copper(II) reacted = (100 / 1000) × 0.5 = 0.05	1
	Moles of zinc reacted = 0.05	1
	Mass of zinc lost = 0.05 × 65.4 = 3.27 g Correct final answer without working scores M3 only.	1
(c)	Allow cell to discharge until [Cu²+] is 0.5 Alternative: Allow cell to discharge completely.	1
	Confirmed by colorimetric measurement or other suitable method Solution colourless or use of chemical test to determine absence of copper(II)	1
	Weigh the Zn electrode before and after the experiment Weigh Zn electrodes before and after and halve the mass change.	1

M2.(a) It has mobile ions / ions can move through it / free ions
Do not allow movement of electrons.
Allow specific ions provided they are moving but do not react.

- (b) <u>Chloride</u> ions react with <u>copper ions</u> / \underline{Cu}^{2+} **OR** [CuCl₄]²⁻ formed *If incorrect chemistry, mark* = 0
- (c) The Cu²⁺ ions / CuSO₄ in the <u>left-hand</u> electrode more concentrated Allow converse.

So the reaction of Cu^{2+} with $2e^{-}$ will occur (in preference at) <u>left-hand</u> electrode / $Cu \rightarrow Cu^{2+}$ + electrons at <u>right-hand</u> electrode

Allow <u>left-hand</u> electrode positive / <u>right-hand</u> electrode negative. Also reduction at <u>left-hand</u> electrode / oxidation at <u>right-hand</u> electrode. Also <u>left-hand</u> electrode has oxidising agent / <u>right-hand</u> electrode has reducing agent.

Allow E left-hand side > E right-hand side

1

1

1

1

(d) (Eventually) the copper ions / CuSO₄ in each electrode will be at the same concentration

1

1

(e) (i) −3.05 (V) *Must have minus sign.* −3.05 only.

> (ii) $\text{LiMnO}_2 \rightarrow \text{Li} + \text{MnO}_2$ correct equation Allow 1 for reverse equation. Allow multiples.

Correct direction

If Li^{+} not cancelled but otherwise correct, max = 1 If electrons not cancelled, CE = 0 $LiMnO_2 \rightarrow Li + MnO_2$ scores 2 $Li^{+} + LiMnO_2 \rightarrow Li^{+} + Li + MnO_2$ scores 1 $Li + MnO_2 \rightarrow LiMnO_2$ scores 1

(iii) Electricity for recharging the cell may come from power stations <u>burning</u> (fossil) fuel

Allow any reference to <u>burning</u> (of carbon-containing) fuels. Note combustion = burning.

M3.(a) Electron acceptor / gains electrons / takes electrons away Do not allow electron pair acceptor / gain of electrons / definition of redox (QWC)

(b) Cd(OH)₂

Do not allow 'Cd(OH) /Cd'

Species (on LHS) with the least positive/most negative electrode potential / lowest ${\it E}$ / smallest ${\it E}$

Only allow this mark if M1 answer given correctly or blank Do not allow negative emf

(c) (i) 1.5 (V) / 1.50

1

1

1

1

1

1

	(ii)	2MnO₂ + 2H₂O + Zn →2MnO(OH) + 2OH ⁻ + Zn ²⁺ Ignore state symbols e ⁻ must be cancelled (take care that Zn ²⁺ is on RHS)	1
	(iii)	Allows <u>ions</u> to pass (through it) or words to that effect Penalise passage of electrons Allow mention of particular ions	1
	(iv)	Allows electrons to flow / makes electrical contact / conductor Allow acts as an (inert) electrode / anode / cathode	1
	(v)	Zn is 'used up' / has reacted / oxidised Allow idea that zinc <u>reacts</u> Do not allow just zinc corrodes	1
(d)	(i)	3 / +3 / 111	1
		$2Ni(OH)_2 + Cd(OH)_2 \rightarrow 2NiO(OH) + Cd + 2H_2O$ For correct nickel and cadmium species in correct order (allow H ₂ O missing and OH not cancelled)	1
		For balanced equation (also scores M2) Allow max 1 for M2 and M3 if correct balanced equation but reversed. Ignore state symbols	1
	(ii)	Metal / metal compounds are re-used / supplies are not depleted / It can be re-used <i>Allow does not leak / no landfill problems / less mining / less</i> <i>energy to extract metals / less waste</i>	(the cell)

(ii)	$C_2H_5OH + 3H_2O \rightarrow 2CO_2 + 12H^+ + 12e^-$
	Allow C_2H_6O

- (iii) (+)0.23 (V)
- (iv) <u>CO</u>₂ released by combustion / fermentation / fuel cell / reaction with water Can be answered with the aid of equations 1

(atmospheric) <u>CO₂</u> taken up in <u>photosynthesis</u>

1

1

1

1

1

M4.(a) To remove the oxide layer on the aluminium Do not allow 'cleaning' or 'removal of grease'. Do not allow 'removal of impurities' without qualification.

An appropriate method for delivering H₂ gas over a Pt electrode (b) Need H₂ gas and Pt electrode labelled (allow gas delivered directly below the electrode).

1

1

	The Pt electrode must clearly be in contact with a solution of a named acid. Ignore any concentration or pressure values. Ignore absence of bubbles. Allow if electrode is below outer acid level.	1	
(c)	The carbonate ion reacts with the acid (in the SHE) / reaction between carbonate and Al³⁺ Lose this mark if aluminium carbonate formed but mark on.	1	
	Reaction given (either equation or products specified) OR H ⁺ / Al ³⁺ concentrations change / cell e.m.f. altered	1	5]
M5. (a) [Diagram of an Fe³⁺ / Fe²⁺ electrode that includes the following parts labelled: Solution containing Fe²⁺ and Fe³⁺ ions	1	
	Platinum electrode connected to one terminal of a voltmeter Must be in the solution of iron ions (one type will suffice)	1	
	Salt bridge Do not allow incorrect material for salt bridge and salt bridge must be in the solution (ie it must be shown crossing a meniscus)	1	
	298 K and 100 kPa / 1 bar	1	
	<u>all solutions</u> unit / 1 mol dm ⁻ 3 concentration Allow zero current / high resistance voltmeter as alternative		

(b)	Cu²+ + Fe -	→ Cu + Fe²⁺ Ignore state symbols
	Fe Fe²⁺ Cu	^{1²+} Cu correct order <i>Allow Cu</i> Cu ²⁺ Fe ²⁺ Fe
	Phase bou	ndaries and salt bridge correct, no Pt Allow single / double dashed line for salt bridge Penalise phase boundary at either electrode end Can only score M3 if M2 correct
	Copper ele	ectrode Allow any reference to copper
(c)	<i>E</i> [◎] Au⁺(/ A	u) > <i>E</i> ^e O ₂ (/ H ₂ O) Allow E cell / e.m.f. = 0.45 V Allow 1.68 > 1.23
	So Au⁺ ions	s will oxidise water / water reduces Au⁺ <i>QoL</i>
	2Au⁺ + H₂O	$0 \rightarrow 2Au + \frac{1}{2}O_2 + 2H^*$ Allow multiples

(d) $E^{\circ} \operatorname{Ag}^{+}(/\operatorname{Ag}) > E^{\circ} \operatorname{Fe}^{2+}(/\operatorname{Fe})$

Allow E cell / e.m.f. = 1.24 Allow 0.80 > -0.44

And $E^{\circ} \operatorname{Ag}^{(} / \operatorname{Ag}) > E^{\circ} \operatorname{Fe}^{(} / \operatorname{Fe}^{(+)})$ *Allow E cell / e.m.f.* = 0.03 *Allow 0.80* > 0.77

1

1

1

So silver ions will oxidise iron (to iron(II) ions) and then oxidise Fe(II) ions (further to Fe(III) ions producing silver metal) Allow Ag⁺ ions will oxidise iron to iron(III)

[15]