Mark schemes

Q1.

(a)	M1 decreases yield	1	
	M2 So equilibrium shifts to side with more moles/molecules or more moles/molecules on LHS Allow M2 independent of M1	1	
	M3 So equilibrium shifts (to left side) to oppose decrease in pressure OR to increase pressure Must refer to equilibrium shifting to gain maximum marks		
(b)	M1 amount SO ₂ (= $0.46 - 0.18$) = 0.28 mol	1	
	M2 amount O_2 (= 0.25 – 0.09) = 0.16 mol	1	
	M3 total amount (= 0.28 + 0.16 + 0.18) = <u>0.62</u> mol	1	
	M4 partial pressure of SO ₂ = $\frac{0.28}{0.62}$ x 215 = 97(.1) (kPa) M4 = $\frac{M1}{M3}$ x 215	1	
(c)	$K_{p} = \frac{(pp SO_{3})^{2}}{(pp SO_{2})^{2} x pp O_{2}}$		
	Penalise square brackets in M1 M2 = $1.2(0) \times 10^{-2}$	1	
	$M3 = kPa^{-1}$	1	
(d)	Stays the same	1	
		[1	1]

Q2.

(a)

1

M2 Increases <u>rate</u> of forward and backward reaction equally/by the same amount OR catalyst does not affect position of equilibrium

	M2 Allow Catalyst does not appear in the K_p expression	
	M2 Allow Only temperature affects Kp	
	Ignore Catalysts increase the rate of reaction or	
	rate at which equilibrium is reached 1	
	,	1
		[11]
03		
QJ.	Malos SQ, adhm (-6.08/64.1 - 0.0949) so malos Q, adhm - 0.0474	
(a)	1000000000000000000000000000000000000	1
	Mass of oxygen (= 0.0474 <u>× 32(.0)</u>) = 1.52 g	
	Allow 0.0475	
	Allow M1 × 32	
		1
(h)	M1: Mala fraction SO $= 0.15$	
(U)	Mole fraction $SO_3 = 0.15$ Mole fraction $SO_2 = 0.57$	
	Mole fraction $O_2 = 0.28$	
	Accept fractions for M1	
		1
	$K_{\rm p} = (\underline{\rm pSO}_2)^2 x (\underline{\rm pO}_2) \qquad (= (\underline{\rm \lambdaSO}_2)^2 \underline{\rm P}^2 x (\underline{\rm \lambdaO}_2) \underline{\rm P})$	
	M2 $(pSO_3)^2$ $(\lambda SO_3)^2 P^2$	
	Do not accept []	
	$\lambda = mole \ fraction$	
		1
	$P = K_p x (\lambda SO_3)^2$ or $K_p x (0.15)^2$	
	M3 $(\lambda SO_2)^2 \times (\lambda O_2)$ $(0.57)^2 \times (0.28)$	
	M3 is for rearrangement with or without numbers	
	If incorrect rearrangement allow correct M1 and M2 only	
		1
	$M4 D = 1.01 \times 105 (Do)$ Allow ronge 1.88 x 105 to 1.04 x 105	
	$M4 P = 1.91 \times 10^{\circ} (Pa)$ Allow large 1.00 × 10° to 1.94 × 10°	1
		_
(c)	M1 Kp is higher at higher temperature or converse	
		1
	M2 At higher temperature more dissociation occurs / more products	
	are formed / equilibrium shifts to the right/forward direction	
	M2: Allow converse arguments	
	M2 dependent on M1	
		1
(d)	$(\sqrt{3.94} \times 10^4 \text{ Pa}) = 198.5$	1
		1
	Pa ^{1/2} or Pa ^{0.5}	

	Allow 198 – 198.5 (answer is 198.49) If $\sqrt{7.62 \times 10^5}$ = 873 then lose M1 but allow M2	1 [10]
Q4. B		[1]
05		
(a)	pp nitrogen = $0.25 \times 30 = 7.5$ kPa	1
	pp hydrogen = 0.75 × 30 = <u>22.5 or 23</u> kPa	1
	pp of ammonia = $0.8 \times 150 = 120$ kPa	1
	(pp hydrogen + nitrogen = $150-120 = 30 \text{ kPa}$) Alternative method pp hydrogen = $0.15 \times 150 = 22.5 \text{ or } 23 \text{ kPa}$ pp nitrogen = $0.05 \times 150 = 7.5 \text{ kPa}$	-
(b)	$K_{p} = \frac{(ppNH_{3})^{2}}{(ppN_{2}) \times (ppH_{2})^{3}}$ $Penalise []$	
	$K_p = \frac{(1.10 \times 10^3)^2}{(1.50 \times 10^2)^3 \times 1.20 \times 10^2}$	1
(C)	No mark for this expression	1
	= 0.0029 to 0.003(0) or 2.9 × 10 ⁻³ to 3(.0) × 10 ⁻³ kPa ⁻²	
	If expression inverted in 02.2 allow 1 mark for kPa ² Allow 2.9 to 3(.0) × 10 ⁻⁹ Pa ⁻²	1
(d)	decrease/smaller/lower If increase or no change, 0 marks If blank, mark on	1
	(Reaction/equilibrium) <u>shifts/moves/goes</u> in the endothermic direction (which is to the left)	
	Allow reaction is exothermic so equilibrium <u>moves</u> to the left side	1

	to reduce the temperature OR oppose the increase in temperature	1	[9]
Q6. A			[1]
Q7.			
(a)	Bonds broken = 2(C=O) + 3(H–H) = 2 × 743 + 3 × H–H		
	Bonds formed = $3(C-H) + (C-O) + 3(O-H) = 3 \times 412 + 360 + 3 \times 463$ Both required	1	
	-49 = [2 × 743 + 3 × (H–H)] - [3 × 412 + 360 + 3 × 463]		
	3(H–H) = –49 – 2 × 743 + [3 × 412 + 360 + 3 × 463] = 1450 Both required	1	
	H–H = 483 (kJ mol ⁻¹) Allow 483.3(3)	1	
(b)	Mean bond enthalpies are not the same as the actual bond enthalpies in CO_2 (and / or methanol and / or water)	1	
(c)	The carbon dioxide (produced on burning methanol) is used up in this reaction	1	
(d)	4 mol of gas form 2 mol	1	
	At high pressure the position of equilibrium moves to the right to lower the pressure / oppose the high pressure	1	
	This increases the yield of methanol	1	
(e)	Impurities (or sulfur compounds) block the active sites Allow catalyst poisoned	1	
(f)	Stage 1: moles of components in the equilibrium mixture Extended response question		
	$CO_2(g)$ + $3H_2(g) \stackrel{\longrightarrow}{=} CH_3OH(g)$ + $H_2O(g)$		

Initial moles	1.0	3.0	0	0		
Eqm moles	(1–0.86) = 0.14	(3–3×0.86) = 0.42	0.86	0.86	1	
1 Stage 2: Partial pressure calculations						
Total moles	of gas = 2.28					
Partial pressures = mol fraction $\times p_{total}$						
p _{CO2} = mol f	raction \times p _{total} =	0.14 × 500 / 2.28	3 = 30.7 kPa	а	I	
$p_{H2} = \text{mol fraction} \times p_{\text{total}} = 0.42 \times 500 / 2.28 = 92.1 \text{ kPa}$ $M3 \text{ is for partial pressures of both reactants}$ $Alternative M3 =$ $pp_{C02} = 0.0614 \times 500$ $pp_{H2} = 0.1842 \times 500$						
р _{снзон} = то	I fraction × p _{total}	= 0.86 × 500 / 2.	28 = 188.6	kPa		
$p_{H2O} = mol \ fraction \times p_{total} = 0.86 \times 500 / 2.28 = 188.6 \ kPa$ $M4 \ is \ for \ partial \ pressures \ of \ both \ products$ $Alternative \ M4 =$ $p_{Payson} = 0.3772 \times 500$						
	$pp_{H_{20}} = 0.3772$	× 500			1	
Stage 3: Eq	uilibrium consta	ant calculation				
$K_{p} = p_{CH3OH} \times p_{H2O} / p_{CO2} \times (p_{H2})^{3}$					1	
Hence $K_p = 188.6 \times 188.6 / 30.7 \times (92.1)^3 = 1.483 \times 10^{-3} = 1.5 \times 10^{-3}$						
	Answer must b	e to 2 significant	figures		1	
Units = <u>kPa</u>	-2				1	[16]

Q8. D

[1]