CHAPTER 19 EQUILIBRIUM CONSTANT Kp | 1 | Consider the equilibrium system below. | | |---|---|-----------| | | $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$ | | | | The partial pressures for the gases in the equilibrium mixture are: | | | | $pSO_2 = 0.080 \text{ atm}$
$pO_2 = 0.90 \text{ atm}$
$pSO_3 = 5.0 \text{ atm}$ | | | | Calculate k_p for the system. Give your answer to an appropriate number of significant figures. Include the unit. | (3 marks) | | | | | | 2 | Calculate the value of K_p for the system shown below. | | | | $2NO_{2(g)} \rightleftharpoons N_2O_{4(g)}$ | | | | At 65°C the partial pressures of the gases at equilibrium are: | | | | $pNO_2 = 0.80 \text{ atm}$
$pN_2O_4 = 0.25 \text{ atm}$ | (3 marks) | | | | | | 3F | $H_{2(g)} + N_{2(g)} \rightleftharpoons 2NH_{2(g)}$ | |-----|---| | | nd found that there were 26.0 moles of $\mathrm{NH_3}$, 13.0 moles of $\mathrm{H_2}$, and 65.0 moles $\mathrm{N_2}$ present in the equilibrium mixture. | | Tł | ne total pressure of the system was 12.0 atm. | | (a) | Calculate the mole fraction of each gas at equilibrium. | | | | | | | | | | | | Almana Ma | | (b) | (1 mark) Calculate the partial pressure of each gas at equilibrium. | | (2) | | | | | | | | | | (1 mark) | | (c) | Calculate K_p for this system. Give your answer to 3 decimal places and include | | (-) | any units. | | | | | | | | | | | | | | | (3 marks | | | | 3 A chemist analysed the equilibrium system below | $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$ | | |---|---------| | At equilibrium there was 0.30 mol of H_2 , 0.40 mol of I_2 , and 1.40 mol of | f HI. | | Calculate the K_p . Give your answer to 2 significant figures and include | units. | | | | | | | | | (3 mark | | Phosphorus pentachloride, PCl ₅ , decomposes on heating to form phosphrichloride, PCl ₃ , and chlorine, Cl ₂ , according to the equation below. | ohorus | | $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ | | | At a temperature of 350° C and a pressure of 12.0 atm the amount of ga present at equilibrium was 0.40 mol of PCl ₅ , 0.75 mol of PCl ₃ , and 0.90 Cl ₂ . | 4 A chemist investigated the equilibrium system below, at 450°C and 3.00 atm. | 6 | Calculate the value of K_p for the system shown below. | |---|--| | | $3H_{2(g)} + N_{2(g)} \rightleftharpoons 2NH_{3(g)}$ | | | At 800°C the partial pressures of the gases at equilibrium are: | | | $pH_2 = 0.80 \text{ atm}$
$pN_2 = 0.25 \text{ atm}$
$pNH_3 = 0.35 \text{ atm}$ | | | Give your answer to two significant figures and include any units. | | | | | | | | | | | | (3 marks) |