## CHAPTER 19 EQUILIBRIUM CONSTANT Kp

| 1 | Consider the equilibrium system below.                                                                              |           |
|---|---------------------------------------------------------------------------------------------------------------------|-----------|
|   | $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$                                                               |           |
|   | The partial pressures for the gases in the equilibrium mixture are:                                                 |           |
|   | $pSO_2 = 0.080 \text{ atm}$<br>$pO_2 = 0.90 \text{ atm}$<br>$pSO_3 = 5.0 \text{ atm}$                               |           |
|   | Calculate $k_p$ for the system. Give your answer to an appropriate number of significant figures. Include the unit. |           |
|   |                                                                                                                     |           |
|   |                                                                                                                     |           |
|   |                                                                                                                     |           |
|   |                                                                                                                     |           |
|   |                                                                                                                     | (3 marks) |
|   |                                                                                                                     |           |
| 2 | Calculate the value of $K_p$ for the system shown below.                                                            |           |
|   | $2NO_{2(g)} \rightleftharpoons N_2O_{4(g)}$                                                                         |           |
|   | At 65°C the partial pressures of the gases at equilibrium are:                                                      |           |
|   | $pNO_2 = 0.80 \text{ atm}$<br>$pN_2O_4 = 0.25 \text{ atm}$                                                          |           |
|   |                                                                                                                     |           |
|   |                                                                                                                     |           |
|   |                                                                                                                     |           |
|   |                                                                                                                     |           |
|   |                                                                                                                     | (3 marks) |
|   |                                                                                                                     |           |

| 3F  | $H_{2(g)} + N_{2(g)} \rightleftharpoons 2NH_{2(g)}$                                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | nd found that there were 26.0 moles of $\mathrm{NH_3}$ , 13.0 moles of $\mathrm{H_2}$ , and 65.0 moles $\mathrm{N_2}$ present in the equilibrium mixture. |
| Tł  | ne total pressure of the system was 12.0 atm.                                                                                                             |
| (a) | Calculate the mole fraction of each gas at equilibrium.                                                                                                   |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     | Almana Ma                                                                                                                                                 |
| (b) | (1 mark)  Calculate the partial pressure of each gas at equilibrium.                                                                                      |
| (2) |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     | (1 mark)                                                                                                                                                  |
| (c) | Calculate $K_p$ for this system. Give your answer to 3 decimal places and include                                                                         |
| (-) | any units.                                                                                                                                                |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     |                                                                                                                                                           |
|     | (3 marks                                                                                                                                                  |
|     |                                                                                                                                                           |

3 A chemist analysed the equilibrium system below

| $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$                                                                                                                                                          |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| At equilibrium there was 0.30 mol of $H_2$ , 0.40 mol of $I_2$ , and 1.40 mol of                                                                                                                            | f HI.   |
| Calculate the $K_p$ . Give your answer to 2 significant figures and include                                                                                                                                 | units.  |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             | (3 mark |
| Phosphorus pentachloride, PCl <sub>5</sub> , decomposes on heating to form phosphrichloride, PCl <sub>3</sub> , and chlorine, Cl <sub>2</sub> , according to the equation below.                            | ohorus  |
| $PCl_5 \rightleftharpoons PCl_3 + Cl_2$                                                                                                                                                                     |         |
| At a temperature of $350^{\circ}$ C and a pressure of $12.0$ atm the amount of ga present at equilibrium was $0.40$ mol of PCl <sub>5</sub> , $0.75$ mol of PCl <sub>3</sub> , and $0.90$ Cl <sub>2</sub> . |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                             |         |

4 A chemist investigated the equilibrium system below, at 450°C and 3.00 atm.

| 6 | Calculate the value of $K_p$ for the system shown below.                             |
|---|--------------------------------------------------------------------------------------|
|   | $3H_{2(g)} + N_{2(g)} \rightleftharpoons 2NH_{3(g)}$                                 |
|   | At 800°C the partial pressures of the gases at equilibrium are:                      |
|   | $pH_2 = 0.80 \text{ atm}$<br>$pN_2 = 0.25 \text{ atm}$<br>$pNH_3 = 0.35 \text{ atm}$ |
|   | Give your answer to two significant figures and include any units.                   |
|   |                                                                                      |
|   |                                                                                      |
|   |                                                                                      |
|   | (3 marks)                                                                            |