AQA Chemistry

19 Equilibrium constant K_p Practice questions

Question number	Answer	Marks	Guidance
1	$K_{p} = \frac{p^{2}SO_{3}(g)_{\text{eqm}}}{p^{2}SO_{2}(g)_{\text{eqm}} \times pO_{2}(g)_{\text{eqm}}}$	1	1 mark for numerical answer with unit. 1 mark for correct s.f.
	$K_{\rm p} = \frac{5.0^2}{0.08^2 \times 0.9}$	1	1 mark for correct sin
	$K_p = 4340.2 \text{ atm}^{-1}$ $K_p = 4300 \text{ atm}^{-1} \text{ (to 2 s.f.)}$	1	
2	$K_{p} = \frac{pN_{2}O_{4}(g)_{\text{eqm}}}{p^{2}NO_{2}(g)_{\text{eqm}}}$	1	
	$K_{\rm p} = \frac{0.25}{0.80^2}$ $K_{\rm p} = 0.3906 \text{ atm}^{-1}$	1	
	$K_p = 0.3906 \text{ atm}$ $K_p = 0.391 \text{ atm}^{-1} \text{ to 3 s.f.}$	1	
3 (i)	Mole fraction = $\frac{\text{no. of moles of a given gas}}{\text{total no. of moles in the mixture}}$ Mole fraction NH ₃ = $\frac{26.0}{104.0}$ = 0.25	1	
	Mole fraction $H_2 = \frac{13.0}{104.0} = 0.125$		
	Mole fraction $N_2 = \frac{65.0}{104.0} = 0.625$		
3 (ii)	Partial pressure = mole fraction × total pressure Partial pressure $NH_3 = 0.25 \times 12.0 = 3.00$ atm Partial pressure $H_2 = 0.125 \times 12.0 = 1.50$ atm Partial pressure $N_2 = 0.625 \times 12.0 = 7.50$ atm	1	
3 (iii)	$K_{p} = \frac{p^{2} NH_{3}(g)_{eqm}}{p^{3}H_{2}(g)_{eqm} \times pN_{2}(g)_{eqm}}$	1	
	$K_p = \frac{9.00}{3.375 \times 7.50}$ $K_p = 0.355 \text{ atm}^{-2}$	1	1 mark including unit
4	$K_{p} = \frac{p^{2} \text{HI}(g)_{\text{eqm}}}{p \text{H}_{2}(g)_{\text{eqm}} \times p \text{I}_{2}(g)_{\text{eqm}}}$	1	-
	There are the same number of moles of gas on each side of the equilibrium, therefore no need to calculate the partial pressures. The units cancel.	1	
	$K_{\rm p} = \frac{1.40^2}{0.30 \times 0.40} = 16.33 = 16 \text{ to 2 s.f. (no units)}$	1	
5	$K_{p} = \frac{p \text{PCl}_{3}(g)_{\text{eqm}} \times p \text{Cl}_{2}(g)_{\text{eqm}}}{p \text{PCl}_{5}(g)_{\text{eqm}}}$	1	
	Mole fraction = $\frac{\text{no. of moles of a given gas}}{\text{total no. of moles in the mixture}}$		
	Mole fraction $PCl_3 = \frac{0.75}{2.05} = 0.3658$	1	

19 Equilibrium constant K_p Practice questions

AQA Chemistry

	Mole fraction $PCl_5 = \frac{0.40}{2.05} = 0.1951$		
	Mole fraction $Cl_2 = \frac{0.90}{2.05} = 0.4390$		
	Partial pressure = mole fraction × total pressure		
	Partial pressure $PCl_3 = 0.3658 \times 12.0 = 4.389$ atm	1	
	Partial pressure CL = 0.1351 × 12.0 = 2.341 atm		
	Partial pressure $Cl_2 = 0.4390 \times 12.0 = 5.268$ atm		
	$K_p = \frac{4.389 \times 5.268}{2.341} = 9.876 \text{ atm}$		
	$K_p = 9.9 \text{ atm (to 2 s.f.)}$	2	2 marks including unit
6	$p^2 NH_3(g)_{eam}$	1	
	$K_{p} = \frac{p^{2} \text{NH}_{3}(g)_{\text{eqm}}}{p^{2} \text{H}_{2}(g)_{\text{eqm}} \times p \text{N}_{2}(g)_{\text{eqm}}}$		
	$K_{\rm p} = \frac{0.35^2}{3}$		
	$K_{\rm p} = \frac{1}{0.80^3 \times 0.25}$	1	
	$K_p = 0.952 \text{ atm}^{-2} = 0.95 \text{ atm}^{-2} \text{ (to 2 s.f.)}$	1	