cata The	lyst. following equilibrium was established at temperature $\mathcal{T}_{\scriptscriptstyle 1}$	
	$2SO_2(g) + O_2(g) = 2SO_3(g)$ $\Delta H^{\Theta} = -196 \text{ kJ mol}^{-1}$	
	partial pressure of sulphur dioxide in the equilibrium mixture was 24 kPa and the total sure in the flask was 104 kPa.	
(a)	Deduce the partial pressure of oxygen and hence calculate the mole fraction of oxygen in the equilibrium mixture.	
	Partial pressure of oxygen	
	Mole fraction of oxygen	
		(3)
(b)	Calculate the partial pressure of sulphur trioxide in the equilibrium mixture.	
		(1)
(c)	Write an expression for the equilibrium constant, K_p , for this reaction. Use this expression to calculate the value of K_p at temperature T_1 and state its units.	
	Expression for K _P	
	Calculation	
	Units	
	Office	(4)
(d)	When equilibrium was established at a different temperature, T_2 , the value of K_p was found to have increased. State which of T_1 and T_2 is the lower temperature and	

Sulphur dioxide and oxygen were mixed in a 2:1 mol ratio and sealed in a flask with a

explain your answer.

Q1.

	Lower temperature	
	Explanation	
		(3)
(e)	In a further experiment, the amounts of sulphur dioxide and oxygen used, the catalyst and the temperature, T_1 , were all unchanged, but a flask of smaller volume was used.	
	Deduce the effect of this change on the yield of sulphur trioxide and on the value of K_0 .	

Effect on yield of SO₃

Effect on K,

(Total 13 marks)

Q2. The following information concerns the equilibrium gas-phase synthesis of methanol.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

At equilibrium, when the temperature is 68 °C, the total pressure is 1.70 MPa. The number of moles of CO, H_2 and CH_3OH present are 0.160, 0.320 and 0.180, respectively.

Thermodynamic data are given below.

Substance	ΔH _€ / kJ mol⁻¹	S / J K¹ mol¹
CO(g)	-110	198
H ₂ (g)	0	131
CH₃OH(g)	-201	240

The mole fraction of hydrogen in the equilibrium mixture is

- **A** 0.242
- **B** 0.485
- **C** 0.653
- **D** 0.970

(Total 1 mark)

Q3.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$

Thermodynamic data for the components of this equilibrium are:

Substance	ΔH [⇔] / kJ mol⁻¹	S [⊕] / J K¹ mol¹
SO₃(g)	-396	+257
SO ₂ (g)	-297	+248
O ₂ (g)	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa, occurs in a vessel of volume 1.80 dm³. At equilibrium, the vessel contains 0.0500 mol of $SO_2(g)$, 0.0800 mol of $O_2(g)$ and 0.0700 mol of $SO_3(g)$.

At equilibrium in the same vessel of volume 1.80 dm $^{\rm 3}$ under altered conditions, the reaction mixture contains 0.0700 mol of SO $_{\rm 3}(g)$, 0.0500 mol of SO $_{\rm 2}(g)$ and 0.0900 mol of O $_{\rm 2}(g)$ at a total pressure of 623 kPa. The temperature in the equilibrium vessel is

- **A** 307 °C
- **B** 596 K
- **C** 337 °C
- **D** 642 K

(Total 1 mark)

Q4.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

Thermodynamic data for the components of this equilibrium are:

Substance	ΔH [⇔] / kJ mol⁻¹	S / J K mol
SO₃(g)	-396	+257
SO ₂ (g)	-297	+248
O ₂ (g)	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa, occurs in a vessel of volume 1.80 dm³. At equilibrium, the vessel contains 0.0500 mol of $SO_2(g)$, 0.0800 mol of $O_2(g)$ and 0.0700 mol of $SO_3(g)$.

Possible units for the equilibrium constant K_0 include

- A no units
- **B** kPa
- C Mpa⁻¹
- **D** kPa⁻²

(Total 1 mark)

Q5. The following information concerns the equilibrium gas-phase synthesis of methanol.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

At equilibrium, when the temperature is 68 °C, the total pressure is 1.70 MPa. The number of moles of CO, H_2 and CH_3OH present are 0.160, 0.320 and 0.180, respectively.

Thermodynamic data are given below.

Substance	ΔH _€ / kJ mol⁻¹	S [⊕] / J K ⁻¹ mol ⁻¹
CO(g)	-110	198
H₂(g)	0	131
CH₃OH(g)	-201	240

Possible units for the equilibrium constant, K_p , for this reaction are

A no units

- **B** kPa
- C MPa⁻¹
- **D** kPa⁻²

(Total 1 mark)

Q6.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

Thermodynamic data for the components of this equilibrium are:

Substance	ΔH [⇔] / kJ mol⁻¹	S / J K mol
SO₃(g)	-396	+257
SO ₂ (g)	-297	+248
O ₂ (g)	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa, occurs in a vessel of volume 1.80 dm³. At equilibrium, the vessel contains 0.0500 mol of $SO_2(g)$, 0.0800 mol of $O_2(g)$ and 0.0700 mol of $SO_3(g)$.

The mole fraction of SO₃ in the equilibrium mixture is

- **A** 0.250
- **B** 0.350
- **C** 0.440
- **D** 0.700

(Total 1 mark)

Q7.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$

Thermodynamic data for the components of this equilibrium are:

Substance	ΔH [⇔] / kJ mol⁻¹	S / J K mol
SO₃(g)	-396	+257
SO ₂ (g)	-297	+248
O ₂ (g)	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa, occurs in a vessel of volume 1.80 dm³. At equilibrium, the vessel contains 0.0500 mol of $SO_2(g)$, 0.0800 mol of $O_2(g)$ and 0.0700 mol of $SO_3(g)$.

With pressures expressed in MPa units, the value of the equilibrium constant, K_p , is

- **A** 4.90
- **B** 6.48
- **C** 9.07
- **D** 16.8

(Total 1 mark)

Q8. (a) The gaseous reactants **W** and **X** were sealed in a flask and the mixture left until the following equilibrium had been established.

$$2W(g) + X(g) \implies 3Y(g) + 2Z(g)$$
 $\Delta H = -200 \text{ kJ mol}^{-1}$

Write an expression for the equilibrium constant, $K_{\!\scriptscriptstyle \rho}$, for this reaction. State one change in the conditions which would both increase the rate of reaction and decrease the value of $K_{\!\scriptscriptstyle \rho}$. Explain your answers.

(7)

(b) Ethyl ethanoate can be prepared by the reactions shown below.

CH₃COOH(I) + C₂H₅OH(I)
$$\rightleftharpoons$$
 CH₃COOC₂H₅(I) + H₂O(I) $\triangle H^{\bullet} = -2.0 \text{ kJ mol}^{-1}$

Reaction 2

$$CH_3COCI(I) + C_2H_5OH(I) \rightarrow CH_3COOC_2H_5(I) + HCI(g) \qquad \Delta H^{\bullet} = -21.6 \text{ kJ mol}^{-1}$$

(i) Give one advantage and one disadvantage of preparing ethyl ethanoate by **Reaction 1** rather than by **Reaction 2**.

(ii) Use the information given above and the data below to calculate values for the standard entropy change, ΔS^{\bullet} , and the standard free-energy change, ΔG^{\bullet} , for **Reaction 2** at 298 K.

	CH ₃ COCI(I)	C ₂ H ₅ OH(I)	CH ₃ COOC ₂ H ₅ (I)	HCI(g)
S [©] /JK¹mol¹	201	161	259	187

(8) (Total 15 marks)

(3)

Q9. When a mixture of 0.345 mol of PCI₃ and 0.268 mol of CI₂ was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium.

$$PCI_s(g) + CI_2(g) \rightleftharpoons PCI_s(g)$$
 $\Delta H^{\bullet} = -93 \text{ kJ mol}^{-1}$

At equilibrium, 0.166 mol of PCI₅ had been formed and the total pressure was 225 kPa.

(a) (i) Calculate the number of moles of PCl₃ and of Cl₂ in the equilibrium mixture.

Moles of PCl₃*

Moles of PCl₃

**Moles of P

Moles of Cl₂

(ii) Calculate the total number of moles of gas in the equilibrium mixture.

.....

(b) Calculate the mole fraction and the partial pressure of PCI₃ in the equilibrium mixture.

Mole fraction of PCI₃

	Parti	al pressure of PCI₃	
			(3)
(c)	(i)	Write an expression for the equilibrium constant, $\mathcal{K}_{\mathfrak{p}}$, for this equilibrium.	
	(ii)	The partial pressures of Cl_2 and PCl_5 in the equilibrium mixture were 51.3 kPa and 83.6 kPa, respectively, and the total pressure remained at 225 kPa. Calculate the value of K_5 at this temperature and state its units.	
			(4)
(d)	State	e the effect on the mole fraction of PCI ₃ in the equilibrium mixture if	
	(i)	the volume of the vessel were to be increased at a constant temperature,	
	(ii)	the temperature were to be increased at constant volume.	
		(Total 12 r	(2) marks)

Q10. At high temperatures, SO₂Cl₂ dissociates according to the following equation.

		$SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ $\Delta H^{\bullet} = +93 \text{ kJ mol}^{-1}$	
		mol of SO ₂ Cl ₂ dissociates, the equilibrium mixture contains 0.75 mol of Cl ₂ at a total pressure of 125 kPa.	
(a)	Write	e an expression for the equilibrium constant, $K_{\!\scriptscriptstyle D}$, for this reaction.	
			(1)
(b)	Calc	culate the total number of moles of gas present in the equilibrium mixture.	
			(2)
			` ,
(c)	(i)	Write a general expression for the partial pressure of a gas in a mixture of	
		gases in terms of the total pressure.	

Calculate the partial pressure of SO_2Cl_2 and the partial pressure of Cl_2 in the equilibrium mixture.	
Partial pressure of SO ₂ Cl ₂	
Partial pressure of Cl ₂	
	(5)

(d)	Calculate a value for the equilibrium constant, $\mathcal{K}_{\!\scriptscriptstyle p}$, for this reaction and give its units.

(3)

(ii)

(e)	State the effect, if any, of an increase in temperature on the value of K , for this reaction. Explain your answer.	
	Effect on K,	
	Explanation	
		(2)
(6)		
(f)	State the effect, if any, of an increase in the total pressure on the value of K , for this reaction.	
	(Total 14 ma	(1) arks)