M1. (a) 12 (kPa) pp = mole fraction × total pressure or mole fraction = 12/104 = 0.115

(allow 0.12)

1

1

1

(c)
$$K_{e} = \frac{(pSO_{3})^{2}}{(pSO_{2})^{2} \times (pO_{2})}$$

(If K, wrong, allow consequential units only)
(penalise square brackets in expression but then mark on)
 $= \frac{68^{2}}{24^{2} \times 12}$
 $= 0.669$
(Allow 0.67)
(Allow full marks in calculation consequential on their
values in (a) and (b))
kPa⁻¹
(Must be correct to score any marks in this section)
Exothermic
Reduce T to shift equilibrium to the right
or forward reaction favoured by low T
or K, increases for low T
or low T favours exothermic reaction
1

Page 2

(e)	Increase	1	
	None	1	[13]
M2 .B			[1]
M3. D			[1]
M4 .C			[1]
M5. D			[1]
M6. B			[1]
M7 .C			[1]

M8.		(a)	М1	$K_{P} = (P Y)^{3}$. (_P Z)²/ (_P W)².(_P	X)	NB [] wrong		1	
		М2	temperature						1	
		М3	 increase particles have more energy or greater velocity/speed more collisions with E > E_a or more successful collisions 							
		M4								
		М5								
		М6	<i>M6</i> Reaction exothermic or converse							
		М7	Equ	iilibrium m	oves in the let	ft			1	
	(b)	Mai Incre Add Dec Two	rks for ease i ition o rease or mo or mo Adv	r other ans in pressure of a catalys in temper ore change vantage; re aster	swers e or concentra st; ature; es made; eaction goes t	ntion to com	allow M1, M5, M6 allow M1, M5, M6 allow M1, M2, M6 allow M1, M6	Max 3 Max 3 Max 2 Max 2		
	Disadvantage; reaction vigorous/dangerous (exothermic must be qualified) or HCI(g) evolved/toxic or CH ₃ COCI expensive NB Allow converse answers Do not allow reactions with other reagents e.g. water or ease of separation							g. water	1	
		(ii)	ΔS	= ΣS prod	ucts – ΣS read	ctants			1	
	ΔΔΞΔΔΔΞ = (259 + 187) – (201 + 161)									
	$\Box \Box \Box \Box \Box \Box \Delta S = 84 (JK^{-1} \text{ mol}^{-1}) (Ignore \text{ units})$ $Allow - 84 \text{ to score (1) mark}$									

 $\Box \Box \Box \Box \Box \Box \Box \Box \Delta G = \Delta H - T \Delta S$

= – 21.6 – 298 × 84/1000 = – 46.6 kJ mol⁻¹ or – 46 600 J mol⁻¹	1
Allow (2) for – 46.6 without units (Mark ΔG consequentially to incorrect ⊿S)	
(e.g. ⊿S = −84 gives ⊿G = +3.4 kJ moŀ¹)	1

M9.

(a) (i) *Moles of PCl*₃: 0.345 − 0.166 = 0.179 (1)

(ii) 0.447 **(1)** allow 2 sig figs conseq on (i)

3

(b) Mole fraction of PCI_3 : 0.179/0.447 (1) = 0.4(00)

3

(c) (i)
$$K_{p} = \frac{\frac{P_{PCl_{s}}}{P_{Pcl_{s}} \times P_{Cl_{2}}}}{(1)}$$

ignore brackets except []
must show P
(ii) $K_{p} = \frac{83.6}{90.1 \times 51.3}$ (1) = 1.8(1) × 10⁻² (1) Kpa⁻¹ (1) (or 1.81 × 10⁻⁵ Pa⁻¹)

PhysicsAndMathsTutor.com

1

1

[15]

If 83.6 and 51.3 wrong way round, AE - 1, answer = 6.81 × 10⁻³ If K_{ρ} × in (i) allow max 2 for substitution of numbers and conseq units

- (d) (i) increased (1)
 - (ii) increased (1)

2

[12]

4

Organic points

 <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g.

(2) Structures

Penalise once per paper

 $\underline{allow}_{or} \begin{array}{c} CH_{3}-or \ -CH_{3} \ or \ \ \ | \ \ or \ CH_{3} \\ or \ \ H_{3}C- \end{array}$

M10. (a)
$$K_{p} = \frac{\frac{P_{SO_{2}} \times P_{Cl_{2}}}{P_{SO_{2}Cl_{2}}}}{(1)}$$

1

2

5

3

2

1

(b)
$$0.25 + 0.75 + 0.75 = 1.75$$
 (1) (1)

(c) (i)
$$p = \text{Total pressure } \times \text{ mol fraction (1)}$$

(ii) *Partial of SO*₂*Cl*₂: 125 ×
$$\frac{0.25}{1.75}$$
 = 17.9 kPa **(1)**

(d)
$$K_{s} = \frac{53.6 \times 53.6}{17.9}$$
 (1) = 161 (1) kPa (1)

Notes

(a) If K_{p} has [] lose mark in (a) but allow full marks in (d)

If K_P wrong/upside down etc, allow max 2 in (d) for substitution of numbers (1) and consequential units (1)

(b) Mark for moles of SO_2CI_2 can be scored in part (c) (ii) if not gained in (b)

1.75 get (2)

If moles of $SO_2CI_2 = 1$, this is a Chemical Error, hence a 2 mark penalty

- If total moles given in (b) = 1.75, this scores [2] in (b); but if the no moles of SO₂Cl₂ = 1 in (c)(ii), lose both marks in (c)(ii) for pp of SO₂Cl₂ = (1/1.75) × 125, i.e. the 2 mark penalty is in (c)(ii).
- If total moles given in (b) = 2.5, score zero in (b), but can gain full marks in (c)(ii) consequentially, i.e. the 2 mark penalty is in (b).
- If moles of SO₂Cl₂ = 1 and total in (b) does not equal 2.5, still lose both in (b) but can get all 4 conseq in (c)(ii) for 1/x etc and 0.75/x etc
- (c) (i) Allow "Total pressure = sum of partial pressures" for (1) or $p_A = x_A \times p_{tot}$
 - (ii) First mark is for mole fraction.
 If either number in either mole fraction is not consequential on (b), then lose both marks for that partial p.
- (d) If pCl_2 is not equal to pSO_2 or any number used in K_P is not conseq on (c)(ii), allow units only

SIG FIGS; must be 3 sig figs in (b) but then allow 2 sig figs in (c) and (d); (ignore extra figs) but penalise incorrect rounding

(e) If effect wrong, no marks for explanation.
 If effect missing, e.g. answer states "equm shifts to right", mark on.
 In the explanation, the word "endothermic" (or its equivalent) is essential.

[14]