Q1.Which change would alter the value of the equilibrium constant $\left(K_{p}\right)$ for this reaction?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

A Increasing the total pressure of the system.

B Increasing the concentration of sulfur trioxide.

C Increasing the concentration of sulfur dioxide.

D Increasing the temperature.
(Total 1 mark)

Q2.This question is about the reaction given below.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Enthalpy data for the reacting species are given in the table below.

Substance	$\mathrm{CO}(\mathrm{g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{H}_{2}(\mathrm{~g})$
$\Delta H_{\mathrm{r}}{ }^{\Theta} / \mathrm{kJ} \mathrm{mol}^{-1}$	-110	-242	-394	0

Which one of the following statements is not correct?
A The value of K_{p} changes when the temperature changes.
B The activation energy decreases when the temperature is increased.
C The entropy change is more positive when the water is liquid rather than gaseous.
D The enthalpy change is more positive when the water is liquid rather than gaseous.

Q3.The equation for the combustion of butane in oxygen is

$$
\mathrm{C}_{4} \mathrm{H}_{10}+6^{\frac{1}{2}} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
$$

The mole fraction of butane in a mixture of butane and oxygen with the minimum amount of oxygen required for complete combustion is

A 0.133
B 0.153
C $\quad 0.167$
C 0.200
(Total 1 mark)

Q4.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are:

Substance	$\Delta \boldsymbol{H}_{\boldsymbol{t}}{ }^{\boldsymbol{\theta}} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\boldsymbol{s}^{\boldsymbol{\theta}} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	+257
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	+248
$\mathrm{O}_{2}(\mathrm{~g})$	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa , occurs in a vessel of volume $1.80 \mathrm{dm}^{3}$. At equilibrium, the vessel contains $0.0500 \mathrm{~mol}^{2} \mathrm{SO}_{2}(\mathrm{~g}), 0.0800 \mathrm{~mol}$ of $\mathrm{O}_{2}(\mathrm{~g})$ and $0.0700{\mathrm{~mol} \mathrm{of} \mathrm{SO}_{3}(\mathrm{~g}) \text {. }}_{\text {. }}$

The mole fraction of SO_{3} in the equilibrium mixture is
A 0.250
B 0.350
C 0.440
D 0.700

Q5.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are:

Substance	$\Delta \boldsymbol{H}^{\boldsymbol{\Theta}} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\boldsymbol{s}^{\boldsymbol{\Theta}} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	+257
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	+248
$\mathrm{O}_{2}(\mathrm{~g})$	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa , occurs in a vessel of volume $1.80 \mathrm{dm}^{3}$. At equilibrium, the vessel contains $0.0500 \mathrm{~mol}^{2} \mathrm{SO}_{2}(\mathrm{~g}), 0.0800 \mathrm{~mol}^{2} \mathrm{O}_{2}(\mathrm{~g})$ and $0.0700 \mathrm{~mol} \mathrm{of}_{\mathrm{SO}}^{3}(\mathrm{~g})$.

With pressures expressed in MPa units, the value of the equilibrium constant, K_{p}, is
A 4.90
B 6.48
C $\quad 9.07$
D $\quad 16.8$

Q6.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are:

Substance	$\Delta \boldsymbol{H}_{\boldsymbol{t}}{ }^{\boldsymbol{\theta}} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\boldsymbol{s}^{\boldsymbol{\theta}} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	+257
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	+248
$\mathrm{O}_{2}(\mathrm{~g})$	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa , occurs in a vessel of volume $1.80 \mathrm{dm}^{3}$. At equilibrium, the vessel contains $0.0500 \mathrm{~mol}^{2} \mathrm{SO}_{2}(\mathrm{~g}), 0.0800 \mathrm{~mol}^{2} \mathrm{O}_{2}(\mathrm{~g})$ and 0.0700 mol of $\mathrm{SO}_{3}(\mathrm{~g})$.

Possible units for the equilibrium constant K_{p} include
A no units
B kPa
C Mpa^{-1}
D kPa^{-2}

Q7.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are:

Substance	$\Delta \boldsymbol{H}_{\boldsymbol{t}}{ }^{\boldsymbol{\theta}} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\boldsymbol{s}^{\boldsymbol{\theta}} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	+257
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	+248
$\mathrm{O}_{2}(\mathrm{~g})$	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa , occurs in a vessel of volume $1.80 \mathrm{dm}^{3}$. At equilibrium, the vessel contains $0.0500 \mathrm{~mol}^{2} \mathrm{SO}_{2}(\mathrm{~g}), 0.0800 \mathrm{~mol}$ of $\mathrm{O}_{2}(\mathrm{~g})$ and 0.0700 mol of $\mathrm{SO}_{3}(\mathrm{~g})$.

At equilibrium in the same vessel of volume $1.80 \mathrm{dm}^{3}$ under altered conditions, the reaction mixture contains $0.0700 \mathrm{~mol}^{2} \mathrm{SO}_{3}(\mathrm{~g}), 0.0500 \mathrm{~mol}^{2} \mathrm{SO}_{2}(\mathrm{~g})$ and $0.0900 \mathrm{~mol}^{\circ} \mathrm{O}_{2}(\mathrm{~g})$ at a total pressure of 623 kPa . The temperature in the equilibrium vessel is

A $\quad 307^{\circ} \mathrm{C}$
B $\quad 596 \mathrm{~K}$
C $\quad 337^{\circ} \mathrm{C}$
D $\quad 642 \mathrm{~K}$
(Total 1 mark)

Q8.The following information concerns the equilibrium gas-phase synthesis of methanol.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

At equilibrium, when the temperature is $68^{\circ} \mathrm{C}$, the total pressure is 1.70 MPa .
The number of moles of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ present are $0.160,0.320$ and 0.180 , respectively.
Thermodynamic data are given below.

Substance	$\Delta H_{\mathrm{f}}{ }^{\boldsymbol{\ominus}} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\boldsymbol{S}^{\boldsymbol{\Theta}} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{CO}(\mathrm{g})$	-110	198
$\mathrm{H}_{2}(\mathrm{~g})$	0	131
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	-201	240

Possible units for the equilibrium constant, K_{p}, for this reaction are
A no units
B kPa
C MPa^{-1}
D kPa^{-2}

Q9.The following information concerns the equilibrium gas-phase synthesis of methanol.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

At equilibrium, when the temperature is $68^{\circ} \mathrm{C}$, the total pressure is 1.70 MPa .
The number of moles of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ present are $0.160,0.320$ and 0.180 , respectively.
Thermodynamic data are given below.

Substance	$\Delta H_{\mathrm{f}}{ }^{\boldsymbol{\ominus}} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\boldsymbol{S}^{\boldsymbol{\Theta}} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{CO}(\mathrm{g})$	-110	198
$\mathrm{H}_{2}(\mathrm{~g})$	0	131
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	-201	240

The mole fraction of hydrogen in the equilibrium mixture is
A 0.242
B 0.485
C 0.653
D 0.970

Q10.The following information concerns the equilibrium gas-phase synthesis of methanol.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

At equilibrium, when the temperature is $68^{\circ} \mathrm{C}$, the total pressure is 1.70 MPa .
The number of moles of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ present are $0.160,0.320$ and 0.180 , respectively.
Thermodynamic data are given below.

Substance	$\Delta H_{\mathrm{f}}^{\boldsymbol{\Theta}} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\boldsymbol{s}^{\boldsymbol{\Theta}} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{CO}(\mathrm{g})$	-110	198
$\mathrm{H}_{2}(\mathrm{~g})$	0	131
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	-201	240

With pressures expressed in MPa units, the value of the equilibrium constant, K_{p}, under these conditions is

A $\quad 1.37$

B 1.66
C $\quad 2.82$
D 4.80

Q11.The following information concerns the equilibrium gas-phase synthesis of methanol.
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH} 3 \mathrm{OH}(\mathrm{g})$
At equilibrium, when the temperature is $68^{\circ} \mathrm{C}$, the total pressure is 1.70 MPa .
The number of moles of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ present are $0.160,0.320$ and 0.180 , respectively.
Thermodynamic data are given below.

Substance	$\Delta H_{\mathrm{f}}^{\boldsymbol{\Theta}} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\boldsymbol{s}^{\boldsymbol{\Theta}} / \mathrm{J} \mathrm{K}^{\mathbf{1}} \mathrm{mol}^{-1}$
$\mathrm{CO}(\mathrm{g})$	-110	198
$\mathrm{H}_{2}(\mathrm{~g})$	0	131
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	-201	240

Which one of the following statements applies to this equilibrium?
A The value of K_{p} increases if the temperature is raised.
B The value of K_{p} increases if the pressure is raised.
C The yield of methanol decreases if the temperature is lowered.
D The yield of methanol decreases if the pressure is lowered.
(Total 1 mark)

