Q1.Which change would alter the value of the equilibrium constant (K_p) for this reaction?

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$

Q2.This question is about the reaction given below.

$$CO(g) + H_2O(g) \implies CO_2(g) + H_2(g)$$

Enthalpy data for the reacting species are given in the table below.

Substance	CO(g)	H₂O(g)	CO ₂ (g)	H₂(g)
ΔH / kJ mol ⁻¹	-110	-242	-394	0

Which one of the following statements is **not** correct?

- **A** The value of K_{P} changes when the temperature changes.
- **B** The activation energy decreases when the temperature is increased.
- **C** The entropy change is more positive when the water is liquid rather than gaseous.
- **D** The enthalpy change is more positive when the water is liquid rather than gaseous.

Q3. The equation for the combustion of butane in oxygen is

$$C_4H_{10} + 6\frac{1}{2}O_2 \rightarrow 4CO_2 + 5H_2O$$

The mole fraction of butane in a mixture of butane and oxygen with the minimum amount of oxygen required for complete combustion is

- **A** 0.133
- **B** 0.153
- **C** 0.167
- **C** 0.200

Q4.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

Thermodynamic data for the components of this equilibrium are:

Substance	ΔH → / kJ mol⁻¹	S / J K ⁻¹ mol ⁻¹
SO₃(g)	-396	+257
SO₂(g)	-297	+248
O ₂ (g)	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa, occurs in a vessel of volume 1.80 dm³. At equilibrium, the vessel contains 0.0500 mol of $SO_2(g)$, 0.0800 mol of $O_2(g)$ and 0.0700 mol of $SO_3(g)$.

The mole fraction of SO_3 in the equilibrium mixture is

- **A** 0.250
- **B** 0.350
- **C** 0.440
- **D** 0.700

Q5.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$2SO_2(g) + O_2(g) \iff 2SO_3(g)$$

Thermodynamic data for the components of this equilibrium are:

Substance	ΔH [✿] / kJ mol⁻¹	S / J K ⁻¹ mol ⁻¹
SO₃(g)	-396	+257
SO₂(g)	-297	+248
O ₂ (g)	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa, occurs in a vessel of volume 1.80 dm³. At equilibrium, the vessel contains 0.0500 mol of $SO_2(g)$, 0.0800 mol of $O_2(g)$ and 0.0700 mol of $SO_3(g)$.

With pressures expressed in MPa units, the value of the equilibrium constant, K_p , is

- **A** 4.90
- **B** 6.48
- **C** 9.07
- **D** 16.8

Q6.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

Thermodynamic data for the components of this equilibrium are:

Substance	ΔH → / kJ mol⁻¹	S / J K⁻¹ mol⁻¹
SO₃(g)	-396	+257
SO ₂ (g)	-297	+248
O ₂ (g)	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa, occurs in a vessel of volume 1.80 dm³. At equilibrium, the vessel contains 0.0500 mol of $SO_2(g)$, 0.0800 mol of $O_2(g)$ and 0.0700 mol of $SO_3(g)$.

Possible units for the equilibrium constant K_{P} include

- A no units
- **B** kPa
- C Mpa⁻¹
- D kPa⁻²

Q7.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$

Thermodynamic data for the components of this equilibrium are:

Substance	ΔH → / kJ mol⁻¹	S / J K⁻¹ mol⁻¹
SO₃(g)	-396	+257
SO ₂ (g)	-297	+248
O ₂ (g)	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa, occurs in a vessel of volume 1.80 dm³. At equilibrium, the vessel contains 0.0500 mol of $SO_2(g)$, 0.0800 mol of $O_2(g)$ and 0.0700 mol of $SO_3(g)$.

At equilibrium in the same vessel of volume 1.80 dm³ under altered conditions, the reaction mixture contains 0.0700 mol of $SO_3(g)$, 0.0500 mol of $SO_2(g)$ and 0.0900 mol of $O_2(g)$ at a total pressure of 623 kPa. The temperature in the equilibrium vessel is

- **A** 307 °C
- **B** 596 K
- **C** 337 °C
- **D** 642 K

Q8.The following information concerns the equilibrium gas-phase synthesis of methanol.

At equilibrium, when the temperature is 68 °C, the total pressure is 1.70 MPa. The number of moles of CO, H_2 and CH_3OH present are 0.160, 0.320 and 0.180, respectively.

Thermodynamic data are given below.

Substance	Δ <i>H</i> f / kJ mol⁻¹	S ∕ J K¹ mol¹
CO(g)	-110	198
H₂(g)	0	131
CH₃OH(g)	-201	240

Possible units for the equilibrium constant, $K_{\rm p}$, for this reaction are

- A no units
- **B** kPa
- C MPa⁻¹
- D kPa⁻²

Q9.The following information concerns the equilibrium gas-phase synthesis of methanol.

At equilibrium, when the temperature is 68 °C, the total pressure is 1.70 MPa. The number of moles of CO, H_2 and CH_3OH present are 0.160, 0.320 and 0.180, respectively.

Thermodynamic data are given below.

Substance	Δ <i>H</i> f / kJ mol⁻¹	S ∕ J K¹ mol¹
CO(g)	-110	198
H₂(g)	0	131
CH₃OH(g)	-201	240

The mole fraction of hydrogen in the equilibrium mixture is

- **A** 0.242
- **B** 0.485
- **C** 0.653
- **D** 0.970

Q10.The following information concerns the equilibrium gas-phase synthesis of methanol.

At equilibrium, when the temperature is 68 °C, the total pressure is 1.70 MPa. The number of moles of CO, H_2 and CH_3OH present are 0.160, 0.320 and 0.180, respectively.

Thermodynamic data are given below.

Substance	ΔH _f / kJ mol⁻¹	S ∕ J K ^{.1} mol ^{.1}
CO(g)	-110	198
H ₂ (g)	0	131
CH₃OH(g)	-201	240

With pressures expressed in MPa units, the value of the equilibrium constant, K_{P} , under these conditions is

A 1.37

B 1.66

- **C** 2.82
- **D** 4.80

Q11.The following information concerns the equilibrium gas-phase synthesis of methanol.

CO(g) + 2H₂(g) < CH3OH(g)

At equilibrium, when the temperature is 68 °C, the total pressure is 1.70 MPa. The number of moles of CO, H_2 and CH_3OH present are 0.160, 0.320 and 0.180, respectively.

Thermodynamic data are given below.

Substance	ΔH _f / kJ mol⁻¹	S → / J K ⁻¹ mol ⁻¹
CO(g)	-110	198
H ₂ (g)	0	131
CH₃OH(g)	-201	240

Which one of the following statements applies to this equilibrium?

- **A** The value of K_{p} increases if the temperature is raised.
- **B** The value of K_{p} increases if the pressure is raised.
- **C** The yield of methanol decreases if the temperature is lowered.
- **D** The yield of methanol decreases if the pressure is lowered.