Q1.

The rate expression for the reaction between X and Y is

$$rate = k [\mathbf{X}]^2 [\mathbf{Y}]$$

 $^{\circ}$

0

 \circ

0

Which statement is correct?

- A The rate constant has units mol⁻¹ dm³ s⁻¹
- **B** The rate of the reaction is halved if the concentration of **X** is halved and the concentration of **Y** is doubled.
- **C** The rate increases by a factor of 16 if the concentration of **X** is tripled and the concentration of **Y** is doubled.
- **D** The rate constant is independent of temperature.

(Total 1 mark)

Q2.

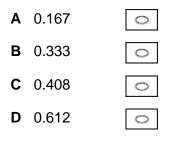
What are the units of the rate constant for a third order reaction?

 A mol dm⁻³ s⁻¹
 \bigcirc

 B mol⁻¹ dm³ s⁻¹
 \bigcirc

 C mol² dm⁻⁶ s⁻¹
 \bigcirc

 D mol⁻² dm⁶ s⁻¹
 \bigcirc


Q3.

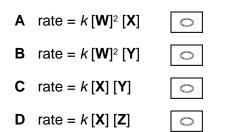
The results of an investigation of the reaction between P and Q are shown in this table.

Experiment	Initial [P] / mol dm⁻³	Initial [Q] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.200	0.500	0.400
2	0.600	To be calculated	0.800

The rate equation is: $rate = k [P] [Q]^2$

What is the initial concentration of **Q** in experiment 2?

(Total 1 mark)


Q4.

Solutions of two compounds, W and X, react together in the presence of a soluble catalyst, Y, as shown in the equation

$2\mathbf{W} + \mathbf{X} \rightarrow \mathbf{Z}$

When the concentrations of $\bm{W},\,\bm{X}$ and \bm{Y} are all doubled, the rate of reaction increases by a factor of four.

Which is a possible rate equation for this reaction?

Q5.

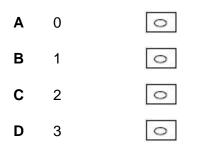
The rate equation for the acid-catalysed reaction between iodine and propanone is:

The rate of reaction was measured for a mixture of iodine, propanone and sulfuric acid at pH = 0.70

In a second mixture the concentration of the sulfuric acid was different but the concentrations of iodine and propanone were unchanged. The new rate of reaction was a quarter of the original rate.

What was the pH of the second mixture?

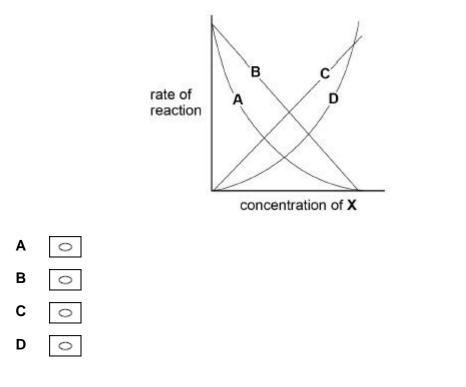
Q6.


A rate investigation was carried out on a reaction involving three reactants, **X**, **Y** and **Z**.

The concentrations of the reactants were varied and the relative rate for each mixture determined.

Experiment	[X]/mol dm⁻₃	[Y]/mol dm⁻₃	[Z]/mol dm⁻₃	Relative rate
1	1 × 10⁻₃	1 × 10⁻₃	2 × 10⁻₃	1
2	2 × 10⁻₃	2 × 10⁻₃	2 × 10⁻₃	4
3	5 × 10⁻⁴	2 × 10⁻₃	4 × 10⁻³	0.5

The reaction is zero order with respect to Y.


What is the overall order of reaction?

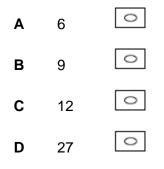
Q7.

A series of experiments was carried out to find the order of reaction with respect to reactant **X**. In these experiments, only the concentration of **X** was changed.

Which graph would show that the reaction is second-order with respect to X?

(Total 1 mark)

Q8.


The rate equation for the hydrogenation of ethene

$$C_2H_4(g) + H_2(g) \longrightarrow C_2H_6(g)$$

is $Rate = k[C_2H_4][H_2]$

At a fixed temperature, the reaction mixture is compressed to triple the original pressure.

What is the factor by which the rate of reaction changes?

