CHAPTER 18 KINETICS

- 1 This question involves the use of kinetic data to calculate the order of a reaction and also a value for a rate constant.
 - (a) The data in this table were obtained in a series of experiments on the rate of the reaction between compounds **E** and **F** at a constant temperature.

Experiment	Initial concentration of E/mol dm ⁻³	Initial concentration of F / mol dm ⁻³	Initial rate of reaction / mol dm ⁻³ s ⁻¹
1	0.15	0.24	0.42×10^{-3}
2	0.45	0.24	3.78×10^{-3}
3	0.90	0.12	7.56×10^{-3}

(i)	Deduce the order of reaction with respect to E .	
		(1 mark
	(Space for working)	
(ii)	Deduce the order of reaction with respect to F .	
	(Space for working)	(1 mark

(b) The data in the following table were obtained in two experiments on the rate of the reaction between compounds **G** and **H** at a constant temperature.

Experiment	Initial concentration of G / mol dm ⁻³	Initial concentration of H / mol dm ⁻³	Initial rate of reaction / mol dm ⁻³ s ⁻¹
4	3.8 × 10 ⁻²	2.6 × 10 ⁻²	8.6 × 10 ⁻⁴
5	6.3 × 10 ⁻²	7.5 × 10 ⁻²	To be calculated

The rate equation for this reaction is

$$rate = k[\mathbf{G}]^2[\mathbf{H}]$$

(i)	Use the data from Experiment ${\bf 4}$ to calculate a value for the rate constant ${\bf k}$ a temperature. Deduce the units of ${\bf k}$.	t this
	Calculation	
	Units	
		(3 marks)
(ii)	Calculate a value for the initial rate of reaction in Experiment 5.	
		(1 mark

2	Gases P	and	Q react	as	shown	in t	the	following	equation.
---	---------	-----	---------	----	-------	------	-----	-----------	-----------

$$2P(g) + 2Q(g) \longrightarrow R(g) + S(g)$$

The initial rate of the reaction was measured in a series of experiments at a constant temperature. The following rate equation was determined.

rate =
$$k[\mathbf{P}]^2[\mathbf{Q}]$$

(a) Complete the table of data for the reaction between P and Q.

Experiment	Initial [P]/moldm ⁻³	Initial [Q] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	2.5 × 10 ⁻²	1.8 × 10 ⁻²	5.0 × 10 ⁻⁵
2	7.5 × 10 ⁻²	1.8 × 10 ⁻²	
3	5.0 × 10 ⁻²		5.0 × 10 ⁻⁵
4		5.4 × 10 ⁻²	4.5 × 10 ⁻⁴

(3 marks)

	(Space for working)	
(b)	Use the data from Experiment 1 to calculate a value for the rate constant (k) temperature. Deduce the units of k .	at this
	Calculation	
	Units	
		(3 marks)

	rate = k	[CH ₃ COCH ₃][H ⁺]	
a)	Give the overall order for this re-	action.	
			(1 mark)
b)	When the initial concentrations of initial rate of reaction was found	of the reactants were as shown in the table be to be 1.24×10^{-4} mol dm ⁻³ s ⁻¹ .	elow, the
		initial concentration / mol dm ⁻³	
	CH ₃ COCH ₃	4.40	
	I_2	5.00×10^{-3}	
	_		
	H ⁺	0.820 ue for the rate constant, k , for the reaction and	nd give its
	H ⁺ Use these data to calculate a valunits.	0.820	nd give its
	H ⁺ Use these data to calculate a valuanits. Calculation	0.820 ue for the rate constant, k , for the reaction and	
	H ⁺ Use these data to calculate a valuanits. Calculation	0.820 The for the rate constant, k, for the reaction and the reaction and the rate constant, the reaction and the rea	
c)	Use these data to calculate a valuanits. Calculation	0.820 The for the rate constant, k, for the reaction and the reaction and the rate constant, the reaction and the rea	(3 marks)

3 Propanone and iodine react in acidic conditions according to the following equation.

(d) The following mechanism for the overall reaction has been proposed.

Step 1
$$CH_3COCH_3 + H^+ \longrightarrow H - C - C - CH_3$$

 $H - C - C - CH_3$
 $H - CH_3$

Step 2
$$H \stackrel{H}{\overset{-}{\underset{-}{\overset{-}{\underset{-}{\overset{-}{\underset{-}}{\overset{+}{\underset{-}}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}}{\overset{+}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}{\underset{-}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}}{\underset{-}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}}{\overset{+}}{\underset{-}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+$$

Step 3
$$H$$
 $C = C - CH_3 + I_2 \longrightarrow ICH_2 - C - CH_3 + I^ H$
 O^+
 H

Step 4
$$ICH_2-C-CH_3 \longrightarrow ICH_2-C-CH_3 + H^+$$
 O^+
 O
 H

Use the rate equation to suggest which of the four steps could be the rate-determining step. Explain your answer.

Rate-determining step

Explanation

(2 marks)

(e) Use your understanding of reaction mechanisms to predict a mechanism for Step 2 by adding one or more curly arrows as necessary to the structure of the carbocation below.

Step 2
$$H \stackrel{H}{\overset{+}{\underset{}}} C = C - CH_3 \longrightarrow H$$
 $C = C - CH_3 + H^+$
 $C = C - CH_3 + H^+$
 $C = C - CH_3 + H^+$
 $C = C - CH_3 + H^+$

(1 mark)