M1.		(a)	propyl methanoate;	
		HC	$OOC_{3}H_{7} + OH^{-} \rightarrow HCOO^{-} + C_{3}H_{7}OH$	1
		OR		
		HC	$OOC_{3}H_{7} + NaOH \rightarrow HCOONa + C_{3}H_{7}OH;$	1
	(b)	ord	er wrt A = 1;	1
		orde	er wrt NaOH = 1;	1
		Initi	al rate in Exp 4 = 2.4 × 10⁻³;	

(c) (i) r(ate) = k[A]

OR

1

1

1

(ii) $k = \frac{9.0 \times 10^{-3}}{0.02}$; = 0.45; s⁻¹;

(iii) (large) excess of OH^- or $[OH^-]$ is large/high;

		[OH ⁻] is (effectively) constant OR [A] is the limiting factor <i>(Q of L mark)</i>			
(d)	(i)	СН2ОН СНОН СН2ОН		1	
		propan(e)-1,2,3-triol			

OR

1,2,3-propan(e)triol

OR

Glycerol;

 (ii) CH₃(CH₂)₁₆COONa or C₁₇H₃₅COONa or C₁₈H₃₅O₂Na; (ignore 3 in front of formula but not if indicating trimer)
 1

(not just anion and penalise Na shown as covalently bonded) soap allow with detergent but not detergent alone;

[15]

1

M3.D

[1]

M4. (a) (i) (Experiment $1 \rightarrow 2$) [A] doubled, ([B] constant,) rate doubled (1) stated or shown numerically

2

(b) (i)
$$k = \frac{9.30 \times 10^{-5}}{(0.75)^2 \times (1.50)} = 1.1(0) \times 10^{-4}$$

(1) (1)

units of k: mol⁻² dm⁶ s⁻¹ (1)

(ii) rate =
$$(1.10 \times 10^{-4}) \times (0.20)^2 \times (0.10)$$

= 4.4(1) × 10⁻⁷ (mol dm⁻³ s⁻¹)
(1) for the answer

Ignore units Conseq on (i) Upside down expression for k scores zero in (i) for 9073 but rate = $9073 \times (0.2)^2 \times (0.1) = 36(.3)$ conseq scores (1) in (ii)

4

M5. (a) Order with respect to iodine: 0 (1) Overall order: 2 (1)

2

- (b) Rate constant: $k = \frac{2 \times 10^{-5}}{(1.5) \times (3 \times 10^{-2})} = 4.4(4) \times 10^{-4}$ (1) Units: mol⁻¹ dm³ s⁻¹ (1)
- (c) Appears in rate equation (1) OR implied by mention of concentration or order

does not appear in (stoichiometric / overall) equation (1)

(d)
$$pH = -log_{10} [H^+] (1)$$

= 1.25
 $[H^+] = 0.056(2) (1)$
 \therefore rate = (4.44 × 10⁻⁴) × (1.50) × (0.0562)
= 3.75 × 10⁻⁵ (1) (mol dm³ s⁻¹)
(3.7 - - 3.8)
Can score all 3 conseq on k from part (b)

3

3

2

[10]

M6.	(a)	(i) Experime	nt 2 2.60 × 10-₃	1
		Experiment 3	0.60 × 10 ⁻²	1
		Experiment 4	11.4 × 10 ⁻²	1

(ii)
$$k = \frac{10.4 \times 10^{-3}}{(4.80 \times 10^{-2})(6.60 \times 10^{-2})^2}$$

= 49.7

PhysicsAndMathsTutor.com

mol⁻² dm⁶ s⁻¹

(b) No change

[7]

1

1

1

6

1

2

[7]

[1]

M7.	(a)	(i) Experiment 2: 0.4(0) × 10 ^{-₃} (1)
		Experiment 3: 0.15 (1)
		Experiment 4: 0.28 (1)

(ii)
$$k = \frac{4.8 \times 10^{-3}}{(0.20)^2 \times (0.30)} = 0.4(0) \text{ mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$$

(1) (1) (1)

M8.C

M9. (a) (i) 2 (1)

(ii) 0 **(1)**

PhysicsAndMathsTutor.com

(b) (i) Value of k: k =
$$\frac{\text{rate}}{[NO]^2[O_2]} = \frac{6.5 \times 10^{-4}}{(5.012 \times 10^{-2})^2 (2.0 \times 10^{-2})} = 13$$

Units of k: mol⁻² dm⁶ s⁻¹ (1)

(ii) rate =
$$13 (6.5 \times 10^{-2})^2 (3.4 \times 10^{-2})$$

= 1.9×10^{-3} (mol dm⁻³ s⁻¹) (1)
If k wrong, the mark in (ii) may be gained conseq for their
 $k \times 1.437 \times 10^{-4}$

[6]

4

1

1

4

M10. (a) Power (or index or shown as x in []*) of concentration term (in rate equation) (1)

- (b) 2 **(1)**
- (c) (i) Order with respect to **A**: 2 (1)
 - Order with respect to \mathbf{B} : 0 (1)
 - (ii) Rate equation: (rate =) k [A]² (1)
 Allow conseq on c(i)
 - Units for rate constant: mol⁻¹ dm³ s⁻¹ (1) conseq on rate equation

[6]

Organic points

(1) <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space

(2) Structures

Penalise once per paper