M1. (a) (i) propyl methanoate must be correct spelling 1 (ii) rate = $k[X][OH^-]$ allow HCOOCH₂CH₂CH₃ (or close) for X allow () but penalise missing minus 8.5 × 10⁻⁵ $k = \overline{(0.024)(0.035)}$ (iii) In (a)(iii), if wrong orders allow mark is for insertion of numbers in correct expression for k If expression for k is upside down, only score units conseq to their expression 1 = 0.10(12)2sf minimum 1 for conseq answer 1 mol⁻¹ dm³ s⁻¹ 1 for conseq units any order 1 (iv) 2.1(3) × 10⁻⁵

(v) $1.3 \times 10^{-4} (1.28 \times 10^{-4})$ allow (1.26×10^{-4}) to (1.3×10^{-4}) ignore units allow 2 sf

(a)(iv) if conseq to wrong k

or $2.1(2) \times 10^{-5}$

allow 2 sf

See * below

NB If wrong check the orders in part (a)(iii) and allow (a)(iv) if conseq to wrong k

ignore units

NB If wrong check the orders in part (a)(iii) and allow

1

1

For example, if orders given are 1st in X and second in OH-

[The mark in a(ii) and also first mark in a(iii) have already been lost]

So allow mark * in (iv) for rate = their k × $(0.012)(0.0175)^2$ = their k × (3.7×10^{-6}) (allow answer to 2sf) ** in (v) for rate = their k × $(0.012)(0.105)^2$ = their k × (1.32×10^{-4}) (allow answer to 2sf)

The numbers will of course vary for different orders.

(vi) Lowered

if wrong, no further mark

1

fewer particles/collisions have energy > E_a

OR

fewer have sufficient (activation) energy (to react) not just fewer successful collisions

1

(b) Step 2

1

(this step with previous) involves one mol/molecule/particle A and two Bs

or 1:2 ratio or same amounts (of reactants) as in rate equation if wrong, no further mark

1

[11]

M2. (a) 3-hydroxybutanal

ignore number 1 i.e. allow 3-hydroxybutan-1-al not hydroxyl

1

$$k = \frac{2.2 \times 10^{-3}}{(0.10)(0.02)}$$

$$= 1.1$$

$$mol^{-1} dm^{3} s^{-4}$$

$$(c) planar or flat C=O or molecule allow planar molecule
$$allow planar molecule$$

$$equal probability of attack from above or below must be equal; not attack of OH$$

$$(d) (i) Step 1 if wrong – no mark for explanation.$$

$$involves ethanal and OH- or species/ "molecules" in rate equation$$

$$(ii) (B-L) acid or proton donor not Lewis acid$$

$$(iii) nucleophilic addition QOL$$

$$1$$$$

not allow M2 before M1, but allow M1 attack on C+ after non-scoring carbonyl arrow ignore error in product

2

1

(e)

[13]

M3. (a) order with respect to **P** is 2

order with respect to **Q** is 1

1

1

(b) (i) rate = $k[R][S]^2$

(if wrong expression, no further marks)

1

rate = $(4.2 \times 10^{-4}) \times 0.16 \times 0.84^{2}$

1

= $4.7 \times 10^{-5} \text{ (mol dm}^{-3} \text{ s}^{-1}\text{)}$

ignore units even if wrong

1

(ii)
$$k = \frac{\text{rate}}{[R][S]^2} = \frac{8.1 \times 10^{-5}}{0.76 \times 0.98^2}$$

$$= 1.1 \times 10^{-4}$$

(iii) T_1 *If calculated value for $k > 4.2 \times 10^{-4}$, then answer to (iii) is T_2 1

[8]

M4. (a)
$$\exp 2 \quad 4.0 \times 10^{-3}$$
 1
$$\exp 3 \quad 0.45 \times 10^{-5}$$
 1
$$\exp 4 \quad 9.0 \times 10^{-3}$$
 1

$$\frac{1.8\times10^{-6}}{(3.0\times10^{-3})^2(1.0\times10^{-3})}$$
 (b)
$$\frac{2000}{1}$$

$$mol^{-2} dm^6 s^{-1}$$

 1 $$^{-2}$$ dm 6$ s $^{-1}$ 1 [6]

M5. (a) $k = \text{rate}/[\text{CH}_3\text{CH}_2\text{COOCH}_3][\text{H}^+]$

or

$$= \frac{1.15 \times 10^{-4}}{(0.150)(0.555)}$$

=
$$1.38 \times 10^{-3}$$
 to 1.4×10^{-3}

 $mol^{\scriptscriptstyle -1}\ dm^{\scriptscriptstyle 3}\ s^{\scriptscriptstyle -1}$

(b) ans = rate constant × (
$$\frac{1}{2}$$
 × 0.150) × ($\frac{1}{2}$ × 0.555) ignore units

= rate constant × 0.0208

$$2.88 \times 10^{-5}$$
 (1.38 × 10⁻³ gives 2.87 × 10⁻⁵)
Allow 2.87 – 2.91 × 10⁻⁵ (1.4 × 10⁻³ gives 2.91 × 10⁻⁵)

1

1

1

1

1

1

1

[7]

(c) $[H^{+}]$ = rate/ $k[CH_{3}COOCH_{2}CH_{3}]$

$$= \frac{4.56 \times 10^{-6}}{(8 \cdot 94 \times 10^{-4})(0 \cdot 123)}$$

$$= 0.415 (0.4146)$$

pH = 0.38 mark independently $[H^{+}] = 0.41$ gives pH = 0.39

M6. (a) (i) 2

(ii) 0

Page 7

(b) (i) rate/[NO₂]²[O₂] 1
13
13
1 mol dm⁻³
1

(ii) 1.9 × 10⁻³
1

(iii) Step 2
1
[7]

M7. (a) 2 or two or second

(b) $k = \frac{1.24 \times 10^{-4}}{(4.40)(0.82)}$ mark is for insertion of numbers into a correctly rearranged rate equ, k = etcif upside down, (or use of I_2 data) score only units mark 1 $= 3.44 \times 10^{-5} \text{ (min 3sfs)}$ 1 $mol^{-1} dm^3 s^{-1}$ any order

1

no change or no effect or stays the same or 1.24×10^{-4}

(c)

(d) 1 or 2 or 1 and 2

if wrong no further mark but mark on from no answer

rate equ doesn't involve I_2 or only step which includes 2 species in rate equ

1

1

1

(e)

any second arrow loses the mark

[8]