Q1.Gases **A** and **B** react as shown in the following equation.

$$2\mathbf{A}(g) + \mathbf{B}(g) \longrightarrow \mathbf{C}(g) + \mathbf{D}(g)$$

The initial rate of the reaction was measured in a series of experiments at a constant temperature. The following rate equation was determined.

rate =
$$k[\mathbf{A}]^2$$

An incomplete table of data for the reaction between **A** and **B** is shown in the table.

Experiment	Initial [A] / mol dm ⁻³	Initial [B] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	4.2×10^{-3}	2.8 × 10 ⁻³	3.3 × 10⁻⁵
2	7.9 × 10 ⁻³	2.8 × 10 ⁻³	
3		5.6 × 10 ⁻³	1.8 × 10 ⁻⁴

(a)	Use the data from Experiment 1 to calculate a value for the rate constant, k ,	at this
	temperature.	

Deduce the units of k.

Calculation	
Jnits	

Use your value of *k* from (a) to complete the table for the reaction between **A** and **B**. (b) (If you have been unable to calculate an answer for (a), you may assume a value of 2.3. This is **not** the correct answer.)

(3)

(2)

(c) The reaction is zero order with respect to **B**.

	Stat	e the significance of this zero order for the mechanism of the reaction.	
		(Total 6 n	(1) narks)
Q2.	(a) occı	In the presence of the catalyst rhodium, the reaction between NO and H_2 urs according to the following equation.	
		$2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(g)$	
	The	kinetics of the reaction were investigated and the rate equation was found to be	
		rate = $k[NO]^2[H_2]$	
Q2. (a) In the occurs according to the limitial NO was 2 (i) Calcording Calco	initial rate of reaction was $6.2\times10^{\text{-6}}$ mol dm ⁻³ s ⁻¹ when the initial concentration of was $2.9\times10^{\text{-2}}$ mol dm ⁻³ and the initial concentration of H ₂ was $2.3\times10^{\text{-2}}$ mol dm ⁻³ .		
	(i)	Calculate the value of the rate constant under these conditions and give its units.	
		Calculation	
		Units	
			(3)
	(ii)	Calculate the initial rate of reaction if the experiment is repeated under the same conditions but with the concentrations of NO and of H ₂ both doubled from their original values.	
			(1)

(b) Using the rate equation and the overall equation, the following three-step mechanism for the reaction was suggested. X and Y are intermediate species.

Step 2
$$X + H_2 \longrightarrow Y$$

Step 3
$$Y + H_2 \rightarrow N_2 + 2H_2O$$

Suggest which **one** of the three steps is the rate-determining step.

Explain your answer.

Rate-determining	step
Rate-determining	, step

(2) (Total 6 marks)

Q3. This question involves the use of kinetic data to deduce the order of a reaction and calculate a value for a rate constant.

The data in **Table 1** were obtained in a series of experiments on the rate of the reaction between compounds **A** and **B** at a constant temperature.

Table 1

Experiment	Initial concentration of A / mol dm ⁻³	Initial concentration of B / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.12	0.26	2.10 × 10 ⁻⁴
2	0.36	0.26	1.89 × 10⁻³
3	0.72	0.13	3.78 × 10 _{-₃}

(a) Show how these data can be used to deduce the rate expression for the reaction

between A and B .	

The data in **Table 2** were obtained in two experiments on the rate of the reaction between compounds **C** and **D** at a constant temperature.

(3)

Table 2

Experiment	Initial concentration of C / mol dm ⁻³	Initial concentration of D / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
4	1.9 × 10⁻²	3.5 × 10⁻²	7.2 × 10⁻⁴
5	3.6 × 10⁻²	5.4 × 10 ⁻²	To be calculated

The rate equation for this reaction is

rate =
$$k[\mathbf{C}]^2[\mathbf{D}]$$

(b) Use the data from experiment **4** to calculate a value for the rate constant, *k*, at this temperature. Deduce the units of *k*.

	k = Units =	(3)
(c)	Calculate a value for the initial rate in experiment 5.	
	Initial rate = mol dm ⁻³ s ⁻¹	(1)
(d)	The rate equation for a reaction is	
	$rate = k[\mathbf{E}]$	
	Explain qualitatively why doubling the temperature has a much greater effect on the rate of the reaction than doubling the concentration of E .	
		(3)
(e)	A slow reaction has a rate constant $k = 6.51 \times 10^{-3} \text{ mol}^{-1} \text{ dm}^3 \text{ at } 300 \text{ K}.$	
	Use the equation $\ln k = \ln A - E_a / RT$ to calculate a value, in kJ mol ⁻¹ , for the activation energy of this reaction.	
	The constant $A = 2.57 \times 10^{10} \text{ mol}^{-1} \text{ dm}^3$. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	

Activation energy =	
Notivation onergy –	(2)
	(Total 12 marks)

Q4.The initial rate of the reaction between two gases **P** and **Q** was measured in a series of experiments at a constant temperature. The following rate equation was determined.

rate =
$$k[P]^2[Q]$$

(a) Complete the table of data below for the reaction between **P** and **Q**.

Experiment	Initial [P] /mol dm⁻³	Initial [Q] /mol dm ^{-₃}	Initial rate /mol dm-3 s-1
1	0.20	0.30	1.8 = 10 ^{-₃}
2	0.40	0.60	
3	0.60		5.4 = 10 ^{-₃}
4		0.90	12.2 = 10⁻₃

	(Space for working)	
		(3)
		(-)
(b)	Use the data from Experiment 1 to calculate a value for the rate constant k and	

Page 7

Calculation

deduce its units.

Units	
Units	
	(2)
	(3)

(c) Consider the graphs E, F, G and H below.

Write in the box below the letter of the graph that shows how the rate constant k varies with temperature.

(1) (Total 7 marks)

 $\mathbf{Q5}.\mathsf{Gases}\;\mathbf{P}$ and \mathbf{Q} react as shown in the following equation.

$$2P(g) + 2Q(g) \longrightarrow R(g) + S(g)$$

The initial rate of the reaction was measured in a series of experiments at a constant temperature. The following rate equation was determined.

rate =
$$k[\mathbf{P}]^2[\mathbf{Q}]$$

(a) Complete the table of data for the reaction between **P** and **Q**.

Experiment	Initial [P] / mol dm ⁻³	Initial [Q] / mol dm ^{-₃}	Initial rate / mol dm-3 s-1
1	2.5 × 10⁻²	1.8 × 10⁻²	5.0 × 10⁻⁵
2	7.5 × 10⁻²	1.8 × 10⁻²	
3	5.0 × 10 ⁻²		5.0 × 10⁻⁵
4		5.4 × 10⁻²	4.5 × 10⁻⁴

	(Space for working)	
		(3)
(b)	Use the data from Experiment ${\bf 1}$ to calculate a value for the rate constant (k) at this temperature. Deduce the units of k .	
	Calculation	
	Units	
	(Total 6 m	(3)
	(Total of III	ui NJ)

Q6.(a) The data in the following table were obtained in two experiments about the rate of the

reaction between substances ${\bf B}$ and ${\bf C}$ at a constant temperature.

Experiment	Initial concentration of B / mol dm ⁻³	Initial concentration of C / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	4.2 × 10⁻²	2.6 × 10⁻²	8.4 × 10⁻⁵
2	6.3 × 10 ⁻²	7.8 × 10 ⁻²	To be calculated

The rate equation for this reaction is known to b	The rate e	quation	for this	reaction	is	known	to	be
---	------------	---------	----------	----------	----	-------	----	----

rate = $k[B]^2[C]$

(i)	Use the data from Experiment ${\bf 1}$ to calculate a value for the rate constant k at this temperature and deduce its units.	
	Calculation	
	Units	
	(Extra space)	
		(3)
		(-)
(ii)	Calculate a value for the initial rate in Experiment 2.	
		(1)

(b) The data in the following table were obtained in a series of experiments about the rate of the reaction between substances **D** and **E** at a constant temperature.

Experiment	Initial concentration of D / mol dm ⁻³	Initial concentration of E / mol dm⁻³	Initial rate /mol dm⁻³ s⁻¹
3	0.13	0.23	0.26 × 10⁻³
4	0.39	0.23	2.34 × 10⁻³
5	0.78	0.46	9.36 × 10⁻³

(1)	Deduce the order of reaction with respect to D .	
		(1)
(ii)	Deduce the order of reaction with respect to E .	
		(1)
		(')
	compound (CH₃)₃CBr reacts with aqueous sodium hydroxide as shown in the lowing equation.	
	$(CH_3)_3CBr + OH^- \longrightarrow (CH_3)_3COH + Br^-$	
	reaction was found to be first order with respect to (CH ₃) ₃ CBr but zero order respect to hydroxide ions.	
The f	following two-step process was suggested.	
Step	1 (CH ₃) ₃ CBr \longrightarrow (CH ₃) ₃ C ⁺ + Br ⁻	
Step	2 (CH₃)₃C⁺ + OH⁻	
(i)	Deduce the rate-determining step in this two-step process.	
		(1)

(c)

(ii) Outline a mechanism for this step using a curly arrow.

(1) (Total 8 marks)

Q7.(a) The table shows the results of three experiments to investigate the rate of reaction between compounds **A** and **B** dissolved in a given solvent.

All three experiments were carried out at the same temperature.

	Experiment 1	Experiment 2	Experiment 3
Initial concentration of A / mol dm ^{-₃}	1.60 × 10 ⁻²	2.40 × 10 ⁻²	3.60 × 10 ⁻²
Initial concentration of B / mol dm-3	4.20 × 10 ⁻²	6.30 × 10 ⁻²	6.30 × 10 ⁻²
Initial rate /mol dm ⁻³ s ⁻¹	8.00 × 10⁻⁵	1.80 × 10⁴	4.05 × 10 ^{-₄}

(i) Deduce the order of reaction with respect to **A**.Tick (✓) **one** box.

Order of reaction with respect to A	Tick (✔)
0	
1	
2	

(1)

(ii) Deduce the order of reaction with respect to **B**.Tick (✓) one box.

Order of reaction	
with respect to B	(✓)

0	
1	
2	

(1)

(b) The reaction between two different compounds, **C** and **D**, is studied at a given temperature.

The rate equation for the reaction is found to be

rate =
$$k[\mathbf{C}][\mathbf{D}]^2$$

(i) When the initial concentration of $\bf C$ is 4.55×10^{-2} mol dm⁻³ and the initial concentration of $\bf D$ is 1.70×10^{-2} mol dm⁻³, the initial rate of reaction is 6.64×10^{-5} mol dm⁻³ s⁻¹.

Calculate the value of the rate constant at this temperature and deduce its units.

Calculation
Units of rate constant
The experiment in part (i) is repeated at the same temperature but after the addition of extra solvent so that the total volume of the mixture is doubled.
Deduce the new initial rate of reaction.

(Total 6 marks)

(3)

(ii)

- **Q8.**This question involves the use of kinetic data to calculate the order of a reaction and also a value for a rate constant.
 - (a) The data in this table were obtained in a series of experiments on the rate of the reaction between compounds **E** and **F** at a constant temperature.

Experiment	Initial concentration of E / mol dm ⁻³	Initial concentration of F / mol dm ⁻³	Initial rate of reaction / mol dm ⁻³ s ⁻¹
1	0.15	0.24	0.42 × 10⁻³
2	0.45	0.24	3.78 × 10⁻³
3	0.90	0.12	7.56 × 10⁻³

(1)	Deduce the order of reaction with respect to E .	
	(Space for working)	
		(1)
		(-,
(ii)	Deduce the order of reaction with respect to F .	
	(Space for working)	
		(1)

(b) The data in the following table were obtained in two experiments on the rate of the reaction between compounds **G** and **H** at a constant temperature.

Experiment	Initial concentration of G / mol dm ⁻³	Initial concentration of H / mol dm ⁻³	Initial rate of reaction
------------	--	--	--------------------------

			/ mol dm ⁻³ s ⁻¹
4	3.8 × 10⁻²	2.6 × 10⁻²	8.6 × 10⁻⁴
5	6.3 × 10 ⁻²	7.5 × 10⁻²	To be calculated

The rate equation for this reaction is

i)	Use the data from Experiment 4 to calculate a value for the rate constant <i>k</i> at this temperature. Deduce the units of <i>k</i> .	
	Calculation	
	Units	
		(3)
ii)	Calculate a value for the initial rate of reaction in Experiment 5 .	
		(1)
	(Total 6 m	

Q9.The rate equation for the hydrogenation of ethene

$$C_2H_4(g) + H_2(g) \longrightarrow C_2H_6(g)$$

is Rate = $k[C_2H_4][H_2]$

At a fixed temperature, the reaction mixture is compressed to triple the original pressure.

What is the factor by which the rate of reaction changes?

A 6

B 9

C 12

D 27

(Total 1 mark)