M1.(a) Consider experiments 1 and 2: [B constant]

[A] increases × 3: rate increases by 3² therefore 2nd order with respect to A

Consider experiments 2 and 3:

[A] increases × 2: rate should increase × 2² but only increases × 2

Therefore, halving [B] halves rate and so 1st order with respect to B

Rate equation: rate = $k[A]^{2}[B]$

(b) rate = k [C]²[D] therefore k = rate / [C]²[D]

$$k = \frac{7.2 \times 10^{-4}}{(1.9 \times 10^{-2})^2 \times (3.5 \times 10^{-2})} = 57.0$$

Allow consequential marking on incorrect transcription

mol⁻² dm⁺⁶ s⁻¹ Any order

(c) rate = $57.0 \times (3.6 \times 10^{-2})^2 \times 5.4 \times 10^{-2} = 3.99 \times 10^{-3} \pmod{\text{dm}^{-3} \text{s}^{-1}}$

OR

Their $k \times (3.6 \times 10^{-2})^2 \times 5.4 \times 10^{-2}$

1

1

1

1

1

1

(d)	Reaction occurs when molecules have <i>E≥E</i> ₃	1	
	Doubling T by 10 °C causes <u>many</u> more molecules to have this <i>E</i>	1	
	Whereas doubling [E] only doubles the number with this <i>E</i>	1	
(e)	<i>E</i> _a = <i>RT</i> (lnA – lnk) / 1000 <i>Mark is for rearrangement of equation and factor of 1000</i> <i>used correctly to convert J into kJ</i>	1	
	<i>E</i> _a = 8.31 × 300 (23.97 – (–5.03)) / 1000 = 72.3 (kJ mol ⁻¹)	1	[12]

M2.(a) Gradient drawn on graph

Line must touch the curve at 0.012 but must not cross the curve.

(b) Stage 1: Rate of reaction when concentration = $0.0120 \text{ mol dm}^{-3}$

From the tangent

Change in [butadiene] = -0.0160 - 0 and change in time = 7800 - 0Extended response

1

1

Gradient = $-(0.0160 - 0) / (7800 - 0) = -2.05 \times 10^{-6}$

1

Stage 2: Comparison of rates and concentrations

Initial rate / rate at 0.0120 = (4.57 × 10⁻⁶) / (2.05 × 10⁻⁶) = 2.23

Inital concentration / concentration at point where tangent drawn = 0.018 / 0.012 = 1.5

Stage 3: Deduction of order

If order is 2, rate should increase by factor of $(1.5)^2 = 2.25$ this is approximately equal to 2.23 therefore order is 2nd with respect to butadiene

1

1

1

1

1

M3.

(a)

(iii)

= 0.10(12) 2sf minimum 1 for conseq answer

mol^{₋1} dm³ s^{₋1} 1 for conseq units any order 1

 (iv) 2.1(3) × 10⁻⁵ or 2.1(2) × 10⁻⁵ ignore units allow 2 sf
 NB If wrong check the orders in part (a)(iii) and allow (a)(iv) if conseq to wrong k See * below

 (v) 1.3 ×10⁻⁴ (1.28 ×10⁻⁴) allow (1.26 × 10⁻⁴) to (1.3 × 10⁻⁴) ignore units allow 2 sf
 NB If wrong check the orders in part (a)(iii) and allow (a)(iv) if conseq to wrong k See ** below

1

1

1

1

1

For example, if orders given are 1st in X and second in OH-

[The mark in a(ii) and also first mark in a(iii) have already been lost]

So allow mark * in (iv) for rate = their k × $(0.012)(0.0175)^2$ = their k × (3.7×10^{-6}) (allow answer to 2sf) ** in (v) for rate = their k × $(0.012)(0.105)^2$ = their k × (1.32×10^{-4}) (allow answer to 2sf)

The numbers will of course vary for different orders.

(vi) Lowered

if wrong, no further mark

fewer particles/collisions have energy > E_a **OR** fewer have sufficient (activation) energy (to react) *not just fewer successful collisions*

(b) Step 2

(this step with previous) involves one mol/molecule/particle A and two Bs

M4.

 $k = \frac{6.2 \times 10^{-6}}{(2.9 \times 10^{-2})^2 \times 2.3 \times 10^{-2}}$ (a) (i) mark is for insertion of numbers into a correctly rearranged rate equ, k = etcAE (-1) for copying numbers wrongly or swapping two numbers 1 = 0.32 (min 2sfs) 1 mol⁻² dm6 s⁻¹ Units must be conseq to their kAny order If k calculation wrong, allow units conseq to their k 1 4.95×10^{-5} to 4.97×10^{-5} or 5.0×10^{-5} (min 2 sfs) (ii) (ignore units) rate = their $k \times 1.547 \times 10^{-4}$ 1 Step 2 If wrong no further mark

One H_2 (and two NO) (appear in rate equation) or species (in step 2) in ratio/proportion as in the rate equation

[6]

1

1

1

[11]

(b)

M5.(a) (i) 2 or two or second or $[E]^2$

(ii) 1 or one or first or $[F]^1$ or [F]

(b) (i)
$$k = \frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$$

mark is for insertion of numbers into a correctly rearranged rate equ , k = etc.AE (-1) for copying numbers wrongly or swapping two numbers.

= 22.9 (Allow 22.9 – 24 after correct rounding)

mol⁻²dm⁺⁶ s^{&&722;1} Any order.

(ii) 6.8(2) × 10⁻³ (mol dm^{&3722.3}s⁻¹)
OR if their k is wrong, award the mark consequentially a quick check can be achieved by using their answer = 2.9768 × 10⁻⁴ Allow 2.9 - 3.1 × 10⁻⁴ for the mark their k
Allow 6.8 × 10⁻³ to 6.9 × 10⁻³ Ignore units.

M6.(a) (i)
$$k = \frac{8.4 \times 10^{-5}}{(4.2 \times 10^{-2})^2 \times 2.6 \times 10^{-2}}$$
 OR $\frac{8.4 \times 10^{-5}}{(1.76 \times 10^{-3}) \times 2.6 \times 10^{-2}}$

PhysicsAndMathsTutor.com

1

1

1

1

1

[6]

Mark is for insertion of numbers into a correctly rearranged rate equ, k = etc. If upside down, score only units mark from their k AE (-1) for copying numbers wrongly or swapping two numbers = 1.8(3)mol⁻² dm⁺⁶ s⁻¹ Any order If k calculation wrong, allow units consequential to their k = expression (ii) 5.67 × 10⁻⁴ (mol dm⁻³ s⁻¹) **OR** their $k \times 3.1 \times 10^{-4}$ Allow 5.57 × 10^{-₄} to 5.7 × 10^{-₄} (b) (i) 2 or second or [D]² 0 or zero or [E]° (ii) Step 1 or equation as shown (i) Penalise Step 2 but mark on H₃ H₃C-

1

1

1

1

1

1

1

Ignore correct partial charges, penalise full / incorrect partial charges

(ii)

CH₃

(c)

(CH₃)₃C

or

PhysicsAndMathsTutor.com

If Step 2 given above, can score the mark here for (CH₃)₃C⁺ allow: OH⁻ (must show lp) If S_N2 mechanism shown then no mark (penalise involvement of :OH⁻ in step 1) Ignore anything after correct step 1

M7.(a) Exp 2 14.(4) ×10⁻³ **OR** 1.4(4) ×10⁻² or 0.014 Allow 2sf

Exp 3 0.1(0)

Exp 4 0.3(0) If three wrong answers, check their value of k in 1(b). They can score all 3 if they have used their (incorrect) value of k. see below. Exp 2 rate = $0.096 \times k$ Exp 3 [**Q**] = 0.015/kExp 4 [**P**] = $0.116/\sqrt{k}$

(b) $K = \frac{1.8 \times 10^{-3}}{(0.20)^2 \times 0.30}$

mark is for insertion of numbers into a correctly rearranged rate equ , k = etc

= 0.15 (min 2sfs) (allow $\frac{3}{20}$) if upside down, score only units mark AE (-1) for copying numbers wrongly or swapping two numbers

1

1

1

1

1

[8]

mol⁻² dm⁺⁶ s⁻¹

Any order If k calculation wrong, allow units conseq to their k

(c) G

[7]

1