CHAPTER 17 THERMODYNAMICS

1 Figure 1 shows how the entropy of a molecular substance X varies with temperature.

Figure 1

(a) (i)	Explain, in terms of molecules, why the entropy is zero when the temperature is
	zero Kelvin.

 	 	 	 		2 marks

(ii) Explain, in terms of molecules, why the first part of the graph in **Figure 1** is a line that slopes up from the origin.

(2 marks)

(iii) On Figure 1, mark on the appropriate axis the boiling point (T_b) of substance X. (1 mark)

(iv)) In terms of	the behaviour of	of molecules, e	xplain why L	. ₂ is longer than I	L ₁ in Figure 1.	
						(2 mar	ks,
(b)	Figure 2 sh with temper		ee-energy char	ige for a par	ticular gas-phase	reaction varie	S
			Figure 2	2			
ΔG/	/kJ mol ⁻¹						
	0-						
	30	00		T/K		500	
(i)		h the aid of a th			ny this line obeys	the	
(ii)	Explain why	/ the magnitude	of ΔG decreas	ses as <i>T</i> incl	reases in this rea	(2 mari	ks)
						(1 ma	rk)

(iii)	State what you can de than 500 K.	educe about the feas	sibility of this reaction	n at temperatures lower	
				(1 mark)	
(c)	The following reaction			ve 5440 K.	
		$H_2O(g) \longrightarrow H_2(g)$	$(g) + \frac{1}{2}O_2(g)$		
	The entropies of the	species involved are	shown in the following	ng table.	
		H ₂ O(g)	H ₂ (g)	O ₂ (g)	
	S/JK ⁻¹ mol ⁻¹	189	131	205	
(i)	Calculate the entropy	change ΔS for this	reaction.	(1 mark)	
(ii)	Calculate a value wit	th units for the entha	alpy change for this r	, ,	
()	(ii) Calculate a value, with units, for the enthalpy change for this reaction at 5440 K. (If you have been unable to answer part (c) (i), you may assume that the value of the entropy change is +98 J K ⁻¹ mol ⁻¹ . This is not the correct value.)				
				(3 marks)	

2 The following equation shows the formation of ammonia.

$$\frac{1}{2}$$
N₂(g) + $\frac{3}{2}$ H₂(g) \longrightarrow NH₃(g)

The graph shows how the free-energy change for this reaction varies with temperature above 240 K.

1	a)	\ A / - ! 4		41	1 - 41 l- 1 l 4	tween ∆G, ∆H	
ı	2	Wyrite an e	aliation to et	now the re	iationenin nei	IWEEN AL- AH	and A.S.
۱	u	vviile all c	qualion to si	IOW LITE IC	iations in bot	LWCCII AO, AII	and $\Delta 0$.

(1 n	nark)

(b) Use the graph to calculate a value for the slope (gradient) of the line. Give the units of this slope and the symbol for the thermodynamic quantity that this slope represents.

Value of the slope	 	
•		
Units		
Office	 	
O h l		
Symbol	 	
		(3 marks

(c) Explain the significance, for this reaction, of temperatures below the temperature value where the line crosses the temperature axis.

(2 marks	

(d)	The line is not drawn below a temperature of 240 K because its slope (gradient) changes at this point.					
	Suggest what happens to the ammonia at 240 K that causes the slope change.	e of the line to				
		(1 mark)				
3	This question is about magnesium oxide. Use data from the table be appropriate, to answer the following questions.	low, where				
	Δt	d [⊕] /kJ mol ⁻¹				
	First electron affinity of oxygen (formation of O ⁻ (g) from O(g))	-142				
	Second electron affinity of oxygen (formation of $O^{2-}(g)$ from $O^{-}(g)$)	+844				
	Atomisation enthalpy of oxygen	+248				
(a)	Define the term enthalpy of lattice dissociation.					
		(3 marks)				
(b)	In terms of the forces acting on particles, suggest one reason why the affinity of oxygen is an exothermic process.	e first electron				
		(1 mark)				

(c)	Complete the Born–Haber cycle for magnesium oxide by drawing the missing energy levels, symbols and arrows. The standard enthalpy change values are given in kJ mol ⁻¹ .				
_		$Mg^{2+}(g) + \frac{1}{2}O_2(g) + 2e^-$			
_	+1450	$Mg^{+}(g) + \frac{1}{2}O_{2}(g) + e^{-}$			
_	+736	$Mg(g) + \frac{1}{2}O_2(g)$			
_	+150	$Mg(s) + \frac{1}{2}O_2(g)$			
_	-602	MgO(s)			
			(4 marks)		
(d)	(d) Use your Born–Haber cycle from part (c) to calculate a value for the enthalpy of lattice dissociation for magnesium oxide.				
			(2 marks)		
(e)	magr	standard free-energy change for the formation of magnesium oxide from nesium and oxygen, $\Delta G_f^{\circ} = -570 \text{ kJ mol}^{-1}$. est one reason why a sample of magnesium appears to be stable in air a	at room		
temperature, despite this negative value for ΔG_f^{\oplus} .					

(1 mark)

(f)	Use the value of ΔG_f^{\ominus} given in part (e) and the value of ΔH_f^{\ominus} from part (c) to calculate a value for the entropy change ΔS^{\ominus} when one mole of magnesium oxide is formed from magnesium and oxygen at 298 K. Give the units of ΔS^{\ominus} .
	(3 marks)
(g)	In terms of the reactants and products and their physical states, account for the sign of the entropy change that you calculated in part (f).
	(2 marks)