Q1. This question is about the reaction given below.

$$CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$$

Enthalpy data for the reacting species are given in the table below.

Substance	CO(g)	H₂O(g)	CO ₂ (g)	H ₂ (g)
ΔH [♠] / kJ mol⁻¹	-110	-242	-394	0

Which one of the following statements is **not** correct?

- **A** The value of K_0 changes when the temperature changes.
- **B** The activation energy decreases when the temperature is increased.
- **C** The entropy change is more positive when the water is liquid rather than gaseous.
- **D** The enthalpy change is more positive when the water is liquid rather than gaseous.

(Total 1 mark)

Q2.In which one of the following reactions is there a decrease in entropy?

A
$$[Fe(H_2O)_6]^{3+}(aq) + 3C_2O_4^{2-}(aq) \rightarrow [Fe(C_2O_4)_3]^{3-}(aq) + 6H_2O(I)$$

$$\textbf{B} \qquad [Cu(H_2O)_6]^{2+}(aq) + EDTA^{4-}(aq) \rightarrow [Cu(EDTA)]^{2-}(aq) + 6H_2O(I)$$

$$\textbf{C} \qquad [CoCl_4]^{2^-}(aq) + 6H_2O(I) \rightarrow [Co(H_2O)_6]^{2^+}(aq) + 4CI^- \ (aq)$$

$$\textbf{D} \qquad \text{Na}_2\text{CO}_3(s) + 2\text{H}^{\scriptscriptstyle +}(\text{aq}) \rightarrow 2\text{Na}^{\scriptscriptstyle +}(\text{aq}) + \text{CO}_2(g) + \text{H}_2\text{O}(I)$$

(Total 1 mark)

Q3.Using the information below, answer this question.

$$Fe_{2}O_{3}(s) + 3H_{2}(g) \rightarrow 2Fe(s) + 3H_{2}O(g) \quad \Delta H^{\stackrel{\bullet}{=}} + 96 \text{ kJ mol}^{-1}, \ \Delta S^{\stackrel{\bullet}{=}} = +138 \text{ J K}^{-1} \text{ mol}^{-1}$$

	Fe ₂ O ₃ (s)	H₂(g)	Fe(s)
ΔH [♠] / kJ mol⁻¹	-822.0	0	0

ΔS ^Φ / J K ⁻¹ mol ⁻¹	90.0	131.0	27.0
---	------	-------	------

The standard entropy value for steam is

- **A** +332 J K⁴ mol⁻¹
- **B** +189 J K⁴ mol⁻¹
- C +145 J K⁴ mol⁻¹
- **D** +85 J K⁴ mol⁻¹

(Total 1 mark)

(3)

Q4. Methanol can be regarded as a carbon-neutral fuel because it can be synthesised from carbon dioxide as shown in the equation below.

$$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$$

Standard enthalpy of formation and standard entropy data for the starting materials and products are shown in the following table.

	CO ₂ (g)	H₂(g)	CH₃OH(g)	H₂O(g)
ΔH ₁ [⊕] / kJ mol⁻¹	-394	0	-201	-242
S ^O / J K ⁻¹ mol ⁻¹	214	131	238	189

Calculate the standard enthalpy change for this reaction.		

(b) Calculate the standard entropy change for this reaction.

(a)

		(3)
(-)	Here were an account to month (a) and (b) to complete which the month in the foreign to	
(c)	Use your answers to parts (a) and (b) to explain why this reaction is not feasible at high temperatures.	
	Calculate the temperature at which the reaction becomes feasible.	
	Suggest why the industrial process is carried out at a higher temperature than you have calculated.	
	(If you have been unable to calculate values for ΔH and ΔS you may assume that they are -61 kJ mol ⁻¹ and -205 J K ⁻¹ mol ⁻¹ respectively. These are not the correct values.)	
		(6)

(d) Write an equation for the complete combustion of methanol. Use your equation to

	explain why the combustion reaction in the gas phase is feasible at all temperatures.	
		(4)
(e)	Give one reason why methanol, synthesised from carbon dioxide and hydrogen, may not be a carbon-neutral fuel.	
	(Total 17 m	(1) arks)

Q5. Chlorine is formed in a reversible reaction as shown by the equation

$$4HCI(g) + O_2(g) \rightleftharpoons 2CI_2(g) + 2H_2O(g)$$

(a) Use the data below to calculate the standard enthalpy change, ΔH^{\bullet} , and the standard entropy change, ΔS^{\bullet} , for this reaction.

Substance	HCl(g)	O ₂ (g)	Cl ₂ (g)	H₂O(g)
ΔH _f Alpha Mol-1	-92	0	0	-242
S ^O / J K ⁻¹ mol ⁻¹	187	205	223	189

Standard enthalpy change, ΔH [•]	

	Stan	dard entropy change, ΔS ^Φ	
			(6)
(b)	The	data below apply to a different gas phase reversible reaction.	
(b)		dard enthalpy change, $\Delta \vec{H}^{\Theta}$ = +208 kJ mol ⁻¹ dard entropy change, $\Delta \vec{S}^{\Theta}$ = +253 J K ⁻¹ mol ⁻¹	
	(i)	Deduce the effect of an increase in temperature on the position of the equilibrium in this reaction. Use Le Chatelier's principle to explain your answer.	
		Effect	
		Explanation	
	(ii)	Calculate the minimum temperature at which this reaction is feasible.	
		(Total 13 ma	(7) arks)

Q6.Refer to the following reaction

$$H_2(g) + I_2(g)$$
 \Longrightarrow 2HI(g) $\Delta H^{\bullet} = -11 \text{ kJ mol}^{-1}, \quad \Delta S^{\bullet} = +20 \text{ J K}^{-1} \text{ mol}^{-1}$

Which one of the following statements is correct?

- **A** This is a redox reaction.
- B The reaction is **not** feasible below 298 K
- **C** At equilibrium, the yield of hydrogen iodide is changed by increasing the pressure.
- **D** At equilibrium, the yield of hydrogen iodide increases as the temperature is increased.

(Total 1 mark)

Q7. (a) A Born–Haber cycle for the formation of calcium sulphide is shown below. The cycle includes enthalpy changes for all steps except step **G**. (The cycle is not drawn to scale.)

(i) Give the full electronic configuration of the ion S²⁻

(ii)	Suggest why step F is an endothermic process.	
(iii)	Name the enthalpy changes in steps B and D .	
	Step B	
	Step D	
(iv)	Explain why the enthalpy change for step D is larger than that for step C .	
(v)	Use the data shown in the cycle to calculate a value for the enthalpy change for step G .	
		(9)
enth	ng a Born–Haber cycle, a value of –905 kJ mol ⁻¹ was determined for the lattice alpy of silver chloride. A value for the lattice enthalpy of silver chloride using the model was –833 kJ mol ⁻¹ .	
Expl	ain what a scientist would be able to deduce from a comparison of these values.	

(b)

			(3)
(c)	exot	ne endothermic reactions occur spontaneously at room temperature. Some hermic reactions do not occur if the reactants are heated together to a very high perature.	
		der to explain the following observations, another factor, the entropy change,	
	ΔS, mus	t be considered. The equation which relates ΔS to ΔH is given below.	
		$\Delta G = \Delta H - T \Delta S$	
	(i)	Explain why the following reaction occurs at room temperature even though the reaction is endothermic.	
		$NaHCO_3(aq) + HCI(aq) \rightarrow NaCI(aq) + H_2O(I) + CO_2(g)$	
	(ii)	Explain why the following reaction does not occur at very high temperatures even though the reaction is exothermic.	
		$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	
		(Total 18 m	(6) narks)

Q8.Which one of the following reactions in aqueous solution has the most positive change in entropy?

A
$$[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$$

B
$$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O$$

C
$$[Cu(H_2O)_6]^{2+} + EDTA^{4-} \rightarrow [Cu(EDTA)]^{2-} + 6H_2O$$

Q9. Which one of the equations below represents a reaction that is feasible at all temperatures?

A
$$P(s) \rightarrow Q(s) + R(g)$$
 endothermic

B
$$2L(g) + M(g) \rightarrow 2N(g)$$
 exothermic

C
$$S(g) \rightarrow 2T(g)$$
 exothermic

$$\textbf{D} \qquad \mathsf{A}(\mathsf{g}) + \mathsf{B}(\mathsf{g}) \to \mathsf{C}(\mathsf{g}) \qquad \qquad \mathsf{endothermic}$$

(Total 1 mark)