Q1.	(a)	(i) Draw a fully-labelled Born–Haber cycle for the formation of solid barium
	, ,	chloride, BaCl ₂ , from its elements. Include state symbols for all species
		involved.

(ii) Use your Born–Haber cycle and the standard enthalpy data given below to calculate a value for the electron affinity of chlorine.

Enthalpy of atomisation of barium	+180 kJ mol⁻¹
Enthalpy of atomisation of chlorine	+122 kJ mol ⁻¹
Enthalpy of formation of barium chloride	–859 kJ mol⁻¹
First ionisation enthalpy of barium	+503 kJ mol⁻¹
Second ionisation enthalpy of barium	+965 kJ mol⁻¹
_attice formation enthalpy of barium chloride	–2056 kJ mol⁻¹

(9)

(b) Use data from part (a)(ii) and the entropy data given below to calculate the lowest temperature at which the following reaction becomes feasible.

$$BaCl_2(s) \rightarrow Ba(s) + Cl_2(g)$$

	BaCl₂(s)	Ba(s)	Cl ₂ (g)
S / J K-1 mol-1	124	63	223

(4) (Total 13 marks)

Q2. Which one of the following has the most covalent character?

- A MgF₂
- B MgBr₂
- C AIF₃
- **D** AlBr₃

(Total 1 mark)

Q3.Which one of the following has the most covalent character?

- A MgF₂
- B MgBr₂
- C AIF₃
- **D** AlBr₃

(Total 1 mark)