Q1. This question is about magnesium oxide.	Use data from the table below, whe	ere appropriate,
to answer the following questions.		

		ΔH° / kJ mol ⁻¹	
First elect	ron affinity of oxygen (formation of O-(g) from O(g))	-142	
Second el	ectron affinity of oxygen (formation of O ² -(g) from O-(g))	+844	
Atomisatio	on enthalpy of oxygen	+248	
(a)	Define the term enthalpy of lattice dissociation.		
			(3)
(b)	In terms of the forces acting on particles, suggest one affinity of oxygen is an exothermic process.	reason why the first electron	
	(Eytra space)		
	(Extra space)		
			(1)

(c) Complete the Born–Haber cycle for magnesium oxide by drawing the missing energy levels, symbols and arrows.

The standard enthalpy change values are given in kJ mol⁻¹.

(d)	Use your Born–Haber cycle from part (c) to calculate a value for the enthalpy of lattice dissociation for magnesium oxide.	
		(2)

(e)	The standard free-energy change for the formation of magnesium oxide from magnesium and oxygen, $\Delta G_i^{\circ} = -570 \text{ kJ mol}^{-1}$. Suggest one reason why a sample of magnesium appears to be stable in air at room temperature, despite this negative value for ΔG_i° .	
	(Extra space)	
		(1)

(f) Use the value of ΔG_i° given in part (e) and the value of ΔH_i° from part (c) to calculate a value for the entropy change ΔS° when one mole of magnesium oxide is formed from magnesium and oxygen at 298 K. Give the units of ΔS° .

		(Fxtr	a space)	
		(LXIII		
				(3)
	(g)	In ter	rms of the reactants and products and their physical states, account for the see entropy change that you calculated in part (f).	sign
			(Total	(2) 16 marks)
Q2.			odynamics can be used to investigate the changes that occur when substanticum fluoride dissolve in water.	ces
	(a)	Give	the meaning of each of the following terms.	
		(i)	enthalpy of lattice formation for calcium fluoride	
				(2)
				(2)

	(ii)	enthalpy of hydration for fluoride ions	
			(1)
(b)		splain the interactions between water molecules and fluoride ions when the oride ions become hydrated.	
			(2)
(c)	Con	onsider the following data.	
(-)		9	
		ΔH^{\oplus} / kJ mol ⁻¹	
		by of lattice formation for CaF ₂ —2611 by of hydration for Ca ²⁺ ions —1650	
		by of hydration for Ca ²⁺ ions —1650 by of hydration for F ⁻ ions —506	
	ширу	-000	
	Use	e these data to calculate a value for the enthalpy of solution for CaF ₂	
	•••••		
	•••••		
			(2)
		(Tota	l 7 marks)

				ycles with lattice enthalpies from provide information about bonding
(a)	Define the terms enthalp	y of atom	isation and lattic	ce dissociation enthalpy.
	Enthalpy of atomisation			
	Lattice dissociation entha	ііру		
(b)	Use the following data to sodium chloride.	calculate	a value for the	lattice dissociation enthalpy of
		Λ	<i>H</i> [⊕] /kJ mol ^{–1}	
_	Na(s) → Na(g)		+109	
	Na(g) → Na ⁺ (g)	+ e ⁻	+494	
	$Cl_2(g) \longrightarrow 2Cl(g)$		+242	
	$Cl(g) + e^- \longrightarrow Cl^-(g)$		-364	
N	$a(s) + \frac{1}{2}Cl_2(g) \longrightarrow NaCl(s)$	3)	411	
(5)	Consider the following to	ttion dias	voiation anthalm	, (A LI ⁹) doto
(c)	Consider the following la	uice alsso	ociation enthalpy	/ (Δ <i>Π</i> [*) Uala.
			1	7

ΔH ^{, e} (experimental)/kJ mol⁻¹	+733	+890
ΔH ^e (theoretical)/kJ mol⁻¹	+732	+758

The values of ΔH_L^{Θ} (experimental) have been determined from Born–Haber cycles.

The values of $\Delta H_{\rm L}^{\rm e}$ (theoretical) have been determined by calculation using a perfect ionic model.

(i)	Explain the meaning of the term perfect ionic model.	
		(2)
(ii)	State what you can deduce about the bonding in NaBr from the data in the table.	
		(1)
(iii)	State what you can deduce about the bonding in AgBr from the data in the table.	
		(1)
	(Total 11 m	arks)

Q4. Calcium fluoride occurs naturally as the mineral fluorite, a very hard crystalline solid that is almost insoluble in water and is used as a gemstone.

Tables 1 and 2 contain thermodynamic data.

Table 1

Process	ΔH° / kJ mol⁻¹
Ca(s) → Ca(g)	+193
$Ca(g) \rightarrow Ca^{\downarrow}(g) + e^{-}$	+590
$Ca^{\downarrow}(g) \rightarrow Ca^{2\downarrow}(g) + e^{-}$	+1150
$F_2(g) \rightarrow 2F(g)$	+158
$F(g) + e^{-} \rightarrow F^{-}(g)$	-348

Table 2

Name of enthalpy change	Δ <i>H</i> ° / kJ mol⁻¹
Enthalpy of lattice dissociation for calcium fluoride	+2602
Enthalpy of lattice dissociation for calcium chloride	+2237
Enthalpy of hydration for F- ions	– 506
Enthalpy of hydration for CI- ions	-364
Enthalpy of hydration for Ca2+ ions	–1650

(a)	calci	e an equation, including state symbols, for the process that occurs when the um fluoride lattice dissociates and for which the enthalpy change is equal to the e enthalpy.	
			(1)
(b)	(i)	Define the term standard enthalpy of formation.	
			(3)

	(11)	enthalpy change equal to the standard enthalpy of formation of calcium fluoride.	
			(1)
	(iii)	Use data from the Tables 1 and 2 to calculate the standard enthalpy of formation for calcium fluoride.	
			(3)
(c)		lain why the enthalpy of lattice dissociation for calcium fluoride is greater than for calcium chloride.	
			(2)
(d)		cium chloride dissolves in water. After a certain amount has dissolved, a rated solution is formed and the following equilibrium is established.	
		$CaCl_2(s) \stackrel{\sim}{\longleftarrow} Ca^{2+}(aq) + 2Cl^{-}(aq)$	
	(i)	Using data from Table 2 , calculate the enthalpy change for this reaction.	

			(2)
	(ii)	Predict whether raising the temperature will increase, decrease or have no effect on the amount of solid calcium chloride that can dissolve in a fixed mass of water. Explain your prediction. (If you have been unable to obtain an answer to part (d) (i), you may assume that the enthalpy change = -60 kJ mol ⁻¹ . This is not the correct answer.) Effect on amount of solid that can dissolve	
			(3)
! !	given name Use y	ium fluoride crystals absorb ultra-violet light. Some of the energy gained is out as visible light. The name of this process, fluorescence, comes from the of the mineral, fluorite. Your knowledge of the equation $\Delta E = hv$ to suggest what happens to the rons in fluorite when ultra-violet light is absorbed and when visible light is given	
		(Total 17 ma	(2) orks)