

[1]

M2.A

[1]

M3.A

[1]

M4. (a) Gains electrons (or removes electrons)

1

(b) (i) +4

1

+6

1

(ii) $Br_2 + 2e^- \rightarrow 2Br^-$

1

(iii) $SO_2 + 2H_2O \rightarrow 4H^+ + \frac{SO_4^{2-}}{4} + 2e^-$

1

(iv) $Br_2 + SO_2 + 2H_2O \rightarrow 2Br^- + 4H^+ + SO_4^{2-}$

1

(c) $Cl_2 + H_2O \rightarrow H^+ + Cl^- + HOCl$

1

Chloride: -1

1

Chlorate(I): +1

1

(d) Chloride ions cannot reduce sulphuric acid

(Or chloride ions are weak reducing agents
Or sulphuric acid is not a strong enough oxidising agent
Or sulphuric acid is a weaker oxidising agent than chlorine)

1

(e) KCI +
$$H_2SO_4 \rightarrow HCI + KHSO_4$$

(Allow 2KCI + $H_2SO_4 \rightarrow 2HCI + K_2SO_4$)

1

(f) (i) Bromine

1

1

(ii) Sulphur dioxide

[13]

M5.D

[1]

M6. (a) (i) HgO

1

(ii) $Hg^{2+} + 2e^{-} \rightarrow Hg$

1

(iii) $2H_2O + SO_2 \rightarrow H_2SO_4 + 2e^- etc$

1

(iv) $Cl_2 + 2e^- \rightarrow 2Cl^-$

1

(b) (i) Vanadium species: VO₂⁺

1

Oxidation state: 5

1

Half-equation: $V^{2+} + 2H_2O \rightarrow VO_2^+ + 4H^+ + 3e^-$

Page 3

(ii) Cell e.m.f 0.06 V

1

Change in e.m.f, Increases

1

More Fe³⁺ ions to accept electrons

1

Fe³⁺/Fe²⁺ electrode becomes more positive

1

(c) (i) $2H_2 \rightarrow 4H^+ + 4e^-$

1

$$4e^{-} + O_2 + 2H_2O \rightarrow 4OH^{-}$$

1

Overall equation $2H_2 + O_2 \rightarrow 2H_2O$

1

(ii) Unchanged

(d) Economic disadvantage; Use of CH₄ or cost of producing or high temp

1

Environmental disadvantage; Makes CO₂

1

1

(e) Cost of manufacture of solar cells

[17]

M7. (a) Accepts electrons

(b) Charge on the ion (or element or atom)

1

(c) +4

1

+5

1

-3

1

(d) (i) $Cu^{-} \rightarrow Cu^{2+} + 2e^{-}$

1

(ii) $NO_3^- + 4H^+ 3e^- \rightarrow NO_2 H_2O$

1

(iii) $3Cu + 2NO_3^- + 8H^+ \rightarrow 3Cu^{2+} + 2NO + 4H_2O$

[8]

M8.B

[1]

M9.A

[1]

M10. (a) removal/loss of electrons

ı

(b) no change

equal number of gaseous moles on either side

both sides affected equally

1

1

1

1

1

[12]

increases

equilibrium moves to lower the temperature/oppose the change

endothermic reaction favoured /forward reaction is endothermic

(ii) $NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$

(iii)
$$Ag \rightarrow Ag^+ + e^-$$

(iv) $NO_{3}^{-} + 4H^{+} + 3Ag \rightarrow NO + 2H_{2}O + 3Ag^{+}$