Q1. Wł	nich	one of	f the following is the electron arrangement of the strongest reducing ag	ent?	
,	A 1s² 2s² 2p⁵				
ı	В	1s² 2	2s² 2p ⁶ 3s²		
(С	1s² 2	2s² 2p ⁶ 3s² 3p ⁵		
I	D	1s² 2	2s² 2p ⁶ 3s² 3p ⁶ 4s²	(Total 1 mark)	
Q2. Wł	nich	one of	f the following is not a redox reaction?		
,	A	Br ₂ +	$SO_2 + 2H_2O \rightarrow SO_4^{2-} + 4H^+ + 2Br^-$		
I	В	SnC	$I_2 + HgCI_2 \rightarrow Hg + SnCI_4$		
(С	Cu₂C	$O + H_2SO_4 \rightarrow CuSO_4 + Cu + H_2O$		
I	D	2CrC	$O_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$	(Total 1 mark)	
Q3.		Hydro	gen gas is used in the chemical industry.		
((a)	Tung	gsten is extracted by passing hydrogen over heated tungsten oxide (W	O ₃).	
		(i)	State the role of the hydrogen in this reaction.		
				(1)	
		(ii)	Write an equation for this reaction.		
				(1)	

(iii) State **one** risk of using hydrogen gas in metal extractions.

	rogen is used to convert oleic acid into stearic acid as shown by the following ation.
	$C = C$ $CH_2(CH_2)_6COOH + H_2$ $CH_3(CH_2)_{16}COOH$ $CH_3(CH_2)_{16}COOH$
i)	oleic acid stearic acid Use your knowledge of the chemistry of alkenes to deduce the type of reaction that has occurred in this conversion.
(ii)	State the type of stereoisomerism shown by oleic acid.
	rogen reacts with nitrogen in the Haber Process. The equation for the librium that is established is shown below.
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
(i)	State Le Chatelier's principle.
(ii)	Use Le Chatelier's principle to explain why an increase in the total pressure of this equilibrium results in an increase in the equilibrium yield of ammonia.

(d) Hydrogen reacts with oxygen in an exothermic reaction as shown by the following equation.

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$$
 $\Delta H = -242 \text{ kJ mol}^{-1}$

Use the information in the equation and the data in the following table to calculate a value for the bond enthalpy of the H–H bond.

	O–H	O=O
Mean bond enthalpy / kJ mol ⁻¹	+ 463	+ 496

(3)

(Total 11 marks)

(1)

(2)

- **Q4.** Copper is extracted from the ore chalcopyrite (CuFeS₂) in a three-stage process.
 - (a) In the first stage of this extraction, the chalcopyrite is heated with silicon dioxide and oxygen.
 - (i) Balance the following equation for this first stage in which copper(I) sulfide is formed.

......CuFeS₂ +SiO₂ +O₂
$$\rightarrow$$
 Cu₂S +FeSiO₃ +SO₂

(ii) Give **one** environmental reason why the SO₂ gas formed in this reaction is not allowed to escape into the atmosphere.

			(1)
	(iii)	State one use for the sulfur dioxide formed in this reaction.	
			(1)
(b)	copp temp	e second stage of this extraction, the copper(I) sulfide is converted into er(II) oxide. This occurs by roasting the sulfide with oxygen at high erature. e an equation for this reaction.	
			(1)
(c)		e third stage of this extraction, copper(II) oxide is reduced to copper by its ion with carbon. Write an equation for this reaction.	
			(1)
(d)		p iron can be used to extract copper from dilute aqueous solutions containing er(II) ions.	
	(i)	Explain why this is a low-cost method of extracting copper.	
			(1)

		(ii)	Write the simplest ionic equation for the reaction of iron with copper(II) ions in aqueous solution.
			(1 (Total 7 marks
05		Ovida	tion and reduction can de defined in terms of electron transfer.
Q5.	<i>(</i>)		
	(a)	Deti	ne the term <i>reduction</i> in terms of electrons.
			(1
	(b)	cond	oxide of nitrogen formed when copper reacts with nitric acid depends upon the entration and the temperature of the acid. The reaction of copper with cold, a acid produces NO as indicated by the following equation.
			$3Cu + 8H^{+} + {}^{2NO_{3}^{-}} \rightarrow 3Cu^{2+} + 4H_{2}O + 2NO$
		In wa	arm, concentrated acid, NO₂ is formed.
		Oxid	ation states can be used to understand electron transfer in these reactions.
		(i)	Give the oxidation states of nitrogen in NO_3^- , NO and NO
			Oxidation state in NO ₃
			Oxidation state in NO ₂
			Oxidation state in NO
		(ii)	Identify, as oxidation or reduction, the formation of NO_2 from NO_3^- ions in the presence of H $^+$ ions. Deduce the half-equation for the reaction.

			NO from NO ₃	
			Half-equation .;	
		(iii)	Deduce the half-equation for the formation of NO_2 from NO_3^- ions in the presence of H+ ions.	
		(iv)	Deduce the overall equation for the reaction of copper with $^{NO_3^-}$ ions and H ions to produce Cu^{2^+} ions, NO_2 and water.	
			(Total 9 r	(8) narks)
Q6.		This c	question is about the extraction of metals.	
	(a)		te is mainly carbon and is a raw material used in the extraction of iron from (III) oxide.	
		(i)	Write an equation for the formation of carbon monoxide from carbon.	
				(1)
		(ii)	Write an equation for the reduction of iron(III) oxide to iron by carbon monoxide.	
				(1)

	(iii)	The Earth's resources of iron(III) oxide are very large and commercial ores have a high iron content. Give one economic and one environmental reason for recycling scrap iron and steel.	
		Economic reason	
		Environmental reason	
			(2)
(b)		e titanium is extracted by the reduction of titanium(IV) chloride, but not by the ct reduction of titanium(IV) oxide using carbon.	
	(i)	Write an equation for the conversion of titanium(IV) oxide into titanium(IV) chloride.	
			(2)
	(ii)	Write an equation for the extraction of titanium from titanium(IV) chloride.	(2)
			(2)
	(iii)	State why titanium is not extracted directly from titanium(IV) oxide using carbon.	
			(1)
(c)	Alun oxide	ninium is extracted by the electrolysis of a molten mixture containing aluminium e.	
	(i)	State why the electrolysis needs to be of a <i>molten</i> mixture.	
			(1)

(ii) Write an equation for the reaction of oxide ions at the positive electrod the electrolysis.		Write an equation for the reaction of oxide ions at the positive electrode during the electrolysis.	
			(1)
		(iii)	State why the positive electrodes need frequent replacement.
			(1)
		(iv)	Give the major reason why it is less expensive to recycle aluminium than to extract it from aluminium oxide by electrolysis.
			(1) (Total 13 marks)
Q7.			past 150 years, three different processes have been used to extract bromine sium bromide. These processes are illustrated below.
	Extra	ction	Process 1
		2KBr	+ MnO_2 + $2H_2SO_4 \rightarrow MnSO_4$ + K_2SO_4 + $2H_2O$ + Br_2
	Extra	ction	Process 2
		The	reaction of solid potassium bromide with concentrated sulfuric acid.
	Extra	ction	Process 3
		The	reaction of aqueous potassium bromide with chlorine gas.
	(a)	wate	e a half-equation for the conversion of MnO_2 in acid solution into Mn^{2+} ions and r. In terms of electrons, state what is meant by the term <i>oxidising agent</i> and ify the oxidising agent in the overall reaction.

		(3)
(b)	Write an equation for Extraction Process 2 and an equation for Extraction Process	
	Calculate the percentage atom economy for the extraction of bromine from	
	potassium bromide by Extraction Process 3. Suggest why Extraction Process 3 is	
	the method in large-scale use today.	
		(5)
(c)	Bromine has been used for more than 70 years to treat the water in swimming pools.	
	The following equilibrium is established when bromine is added to water.	
	Br₂ + H₂O < HBrO + HBr	
	Give the oxidation state of bromine in HBr and in HBrO	
	Give the oxidation state of brothine in the and in the oxidation state of brothine in the and in the oxidation state of brothine in the and in the oxidation state of brothine in the and in the oxidation state of brothine in th	
	Deduce what will happen to this equilibrium as the HBrO reacts with	
	micro-organisms in the swimming pool water. Explain your answer.	

•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	
	(4)
	(Tatal 40 marica)
	(4) (Total 12 marks)