3. Increased surface area (1) more collisions (1)
(c)
(i) \(\text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2 \)
(ii) Speeds up (alters the rate of) a chemical reaction
 Remains unchanged (or not used up)
(iii) Remains unchanged (or not used up or not in the overall reaction equation)
 Offers alternative reaction route (or acts as an intermediate)

5.
(a) Graph starts at origin
 Graph skewed to left and has decreasing gradient to maximum
 Graph after maximum decreases in steepness, never touches \(x \) axis, levels out less than 5 mm from \(x \) axis.

(b) Minimum energy
 To start a reaction (or for a reaction to occur)

(c) Molecules gain energy (or always some molecules have \(E > E_0 \))
 Due to collisions
(d) Decreases

\[E_a \text{ lowered } (1) \]

By alternative route (1)

So more molecules have energy > \(E_a \) (1)\hfill \text{max 2}

7.

(a) (i)

Number of molecules or particle

\(\text{NOT moles or mols or atoms} \)

\(\text{Not fraction or proportion} \)

(ii) The total number of particles (or molecules) in the sample

\(\text{OR the number of molecules present} \)
(iii) No molecules have no energy
OR all molecules have some energy
Do not allow “if there are no molecules there is no energy”

(b) (i) The minimum energy required (1)
for a reaction to occur (1)
OR to start reaction or for a successful collision

(ii) Changes: Catalyst (1)
Explanation: Alternative route (1), with a lower activation energy (1)
OR a lower activation energy (1)
so more molecules can react (1)/more molecules have this energy
If change incorrect CE = 0
Allow answers anywhere in b (ii)

10. (a)
\[
\text{fraction or } \% \text{ or no. molecules or particles} \\
\text{not moles} \quad \text{(kinetic molecular)} \quad \text{energy (1)}
\]
\begin{itemize}
 \item higher and displaced to left (1)
 \item must cross only once, must NOT cross x axis, must go through origin (1)
\end{itemize}
can only score this mark if first mark obtained (ie shape)

(b) See above

(c) Energy < E_a or must have enough energy (to react) (1)

(d) Increase concentration (or pressure) (1)

(e) Many (1) more molecules have $E > E_a$ / enough energy (1)
NOT KE increases with T

(f) Lowers E_a (1)
alternative route (1)

12. (a) Activation energy:-
The minimum energy needed for a reaction to occur / start (1)

(b) Catalyst effect:-
Alternative route (or more molecules have E_a) (1)
Lower activation energy (1)
(c) Increase in moles of gas:-
 Position of E_{mp} unchanged (1)
 More molecules with E_{mp} (1)
 Area under curve increases (1)
 Molecules with $E \geq E_a$ increased (1)

Temperature decreased:-
 Position of E_{mp} moves to the left (1)
 More molecules with E_{mp} (1)
 Area under curve unchanged (1)
 Molecules with $E \geq E_a$ decreased (1)

Catalyst introduced:-
 Position of E_{mp} unchanged (1)
 Molecules with E_{mp} unchanged (1)
 Area under curve unchanged (1)
 Molecules with $E \geq E_a$ increased (1)

13. (a) the minimum energy: 1
 Energy required for a reaction to occur; 1
 (or to start a reaction or for successful collisions)

(b) axes labelled:- y: number (or fraction or %) of molecules (or particles)
 x: energy (or KE); 1
 curve starts at origin; 1
 skewed to right; 1
 approaches x axis as an asymptote; 1
 (penalise a curve that levels off > 10% of max peak height or a
curve that crosses the energy axis)

 second curve displaced to the left (and does not cross T_1 curve for a second time) 1
 and peak higher; 1
 many fewer molecules; 1
 fewer molecules have $E > E_a$; 1
 (can score this mark from suitably marked curves)
(b) molecules (or particles or collisions) do not have enough energy;
(or orientation may be wrong)
increase the pressure;
(or increase the concentration or reduce the volume)
increases the collision frequency;
(or more collisions)
(do not allow if stated to be due to increase in energy implied by
temperature increase)
add a catalyst;
lowers activation energy (or \(E_a \) (Q of L mark));
\[15\]

14.

\[
\begin{align*}
\text{Number of fraction (1)} \\
\text{Energy (1)} \\
\text{\(E_a \)}
\end{align*}
\]

At T2: more molecules (1)
have sufficient energy (1)
plus reference to \(E_a \) or shaded area on graph (1)
Larger mass: more particles (1)
higher curve (1)
most probable energy is same (1)
\[10\]
15. (a) (i) (ii) 4

Number of molecules

peak higher (I) starts at origin, displaced to left, crosses over once (I)

max of y between these limits

peak higher (I) (C.E. if not higher)

starts at origin, displaced by same amount (see limits) and does not cross over (I)

Energy

(b) (i) collide (I)
with sufficient energy (or \(E \geq E_a \)) (I) \((\text{or with correct orientation}) \)

(ii) molecules (or particles) have more energy (or move faster) (I)
molecules (or collisions) have \(E \geq E_a \) (or sufficient energy) (I) 4

(c) (i) equilibrium reached (I)
(or rate forward reaction = rate backward)

(ii) Reaction is endothermic (I)
or \(\Delta H > 0 \)
or reverse reaction is exothermic
endothermic reaction favoured (I)
(or reaction shifts to R
or moves forward
or more products formed) 3

[11]
20. (a) (i) **Point** infinity or never (1)

Explanation no maximum energy for molecules (1)

![Graph showing number of molecules with a given energy and peak higher max at same energy.

(ii)

(iii) no difference (1)

(b) **Requirement 1** Collision (1)

Requirement 2 With sufficient energy or correct orientation (1) 2

[7]

21. (a) Same 1

(b) (i) Decreases 1
More moles on left hand side 1
Equilibrium moves to increase the pressure 1
(Or to oppose the change or to compensate for low pressure)

(ii) Cost of producing high pressure (1)
Cost of plant to resist high pressure (1)
Correct safety factor with reason (1) max 2

(c) No change 1
Catalyst has no effect on equilibrium position 1
(Or catalyst affects rate of forward and backwards reactions equally)

(d) Negative 1
Reaction *(or equilibrium)* moves in the exothermic direction *(or to the right)* 1
In order to oppose the change *(or to raise the temperature)* 1
22. (a) (i) [Diagram showing number of molecules vs. energy]

(ii) C (1)

(b) Requirement 1 collisions (1)
 Requirement 2 with sufficient energy (1) 2

(c) Greater effect Temperature (1)
 Explanation For small ΔT, more molecules (1) have energy ≥ Ea (1) 3

23. (a) removal/loss of electrons 1
 (b) no change 1
 equal number of gaseous moles on either side 1
 both sides affected equally 1
 increases 1
 equilibrium moves to lower the temperature/oppose the change 1
 endothermic reaction favoured /forward reaction is endothermic 1
24. (a) 12 (kPa)

\[pp = \text{mole fraction} \times \text{total pressure or mole fraction} = \frac{12}{104} \]

\[= 0.115 \]

(allow 0.12) 1

(b) 68 (kPa) 1

(c) \[K_p = \frac{(p\text{SO}_2)^2}{(p\text{SO}_3)^2 \times (pO_2)} \]

(If \(K_p \) wrong, allow consequential units only)

(penalise square brackets in expression but then mark on)

\[= \frac{68^2}{24^2 \times 12} \]

\[= 0.669 \]

(Allow 0.67)

(Allow full marks in calculation consequential on their values in (a) and (b)) 1

(d) \(T_2 \)

(Must be correct to score any marks in this section)

Exothermic

Reduce \(T \) to shift equilibrium to the right

or forward reaction favoured by low \(T \)

or \(K_p \) increases for low \(T \)

or low \(T \) favours exothermic reaction 1
(c) Increase 1
None 1

Notes
(a) If K_p has [] lose mark in (a) but allow full marks in (d)
 If K_p wrong/upside down etc, allow max 2 in (d) for substitution of numbers (1) and consequential units (1)
(b) Mark for moles of \(\text{SO}_2\text{Cl}_2 \) can be scored in part (c) (ii) if not gained in (b)

1.75 get \(2 \)

If moles of \(\text{SO}_2\text{Cl}_2 = 1 \), this is a Chemical Error, hence a 2 mark penalty

- If total moles given in (b) = 1.75, this scores \(2 \) in (b); but if the no moles of \(\text{SO}_2\text{Cl}_2 = 1 \) in (c)(ii), lose both marks in (c)(ii) for \(\text{pp of } \text{SO}_2\text{Cl}_2 = (1/1.75) \times 125 \), i.e. the 2 mark penalty is in (c)(ii).
- If total moles given in (b) = 2.5, score zero in (b), but can gain full marks in (c)(ii) consequentially, i.e. the 2 mark penalty is in (b).
- If moles of \(\text{SO}_2\text{Cl}_2 = 1 \) and total in (b) does not equal 2.5, still lose both in (b) but can get all 4 conseq in (c)(ii) for \(1/x \) etc and \(0.75/x \) etc

(c) (i) Allow “Total pressure = sum of partial pressures” for \(1 \) or \(p_A = x_A \times p_{\text{tot}} \)

(ii) First mark is for mole fraction.

- If either number in either mole fraction is not consequential on (b), then lose both marks for that partial p.

(d) If \(\text{pCl}_2 \) is not equal to \(\text{pSO}_2 \) or any number used in \(K_p \) is not conseq on (c)(ii), allow units only

SIG FIGS; must be 3 sig figs in (b) but then allow 2 sig figs in (c) and (d); (ignore extra figs) but penalise incorrect rounding

(e) If effect wrong, no marks for explanation.

If effect missing, e.g. answer states “equm shifts to right”, mark on.

In the explanation, the word “endothermic” (or its equivalent) is essential.

26. (a) An **equilibrium** opposes change \(1 \)

(b) (i) **Effect on yield of hydrogen**: decreases \(1 \)

 Note C.E. if not decrease, but mark on if no answer

 Explanation: pressure lowered (or increase opposed) \(1 \)
 by favouring fewer moles (of gas) \(1 \)

(ii) **Effect on yield of hydrogen**: increase \(1 \)

 CE if wrong as above

 Explanation: pressure / concentration / reactants / steam reduced \(1 \)
 by shifting to right \(1 \)
 or steam removed or forward reaction favoured
(c) **Reason 1**: cost of high temperature / energy (1)

Reason 2: cost of plant (to resist high T) too high (1)

OR plant could not contain high T

27. (a) rate forward reaction = rate backward reaction (1)

concentration remains constant (1)

NOT ‘Equal’,

Allow ‘The same’ if clear that means constant

(b) fewer moles (of gas) on R.H.S (1) *(or converse)*

(methanol favoured) by reducing applied pressure (1)

Or removing constraint

(c) Power / energy required to provide high pressure / pumping (1)

Strong pressure vessel / or equipment (1)

High maintenance costs

Any two

(d) Effect: decreases (1)

Explanation: reaction exothermic (1)

system tries to lower T or remove constraint or oppose the change

or endothermic reaction favoured

(e) to speed up reaction (1)

or otherwise to slow

or takes too long

or to give more molecules E > E_A

28. (a) mark labelled X on curve A where curve C joins A;

(b) equilibrium opposes a change;

(Q of L mark)

(c) B
more ammonia is produced (or yield increases);
fewer moles (of gas) on right (or 4 mol goes to 2 mol);
equilibrium moves to oppose increase in pressure (or oppose change);

(d) C
amount of ammonia (or yield or equilibrium) unchanged;
reaction is faster;

29. (a) (i) All (reagents) are in the same phase/state/are gases
(ii) The forward and backward reactions are occurring
at the same/equal rate
or concentrations of reactants (and products) are constant
and reaction is continuous
Note: “concentrations of reactants and products are the same” is incorrect

(b) (i) (Concentration of hydrogen /products) increased
NB if a product stated this must be H$_2$
Equilibrium moves to right / forward reaction favoured
to remove added water / system reacts to oppose change
Mark CE if effect wrong. Do not allow “rate” answers

(ii) (concentration of hydrogen /products) increased
Equilibrium moves to right / forward reaction favoured
Reaction exothermic / gives out heat / moves to oppose change
Allow max (1) for exothermic if other answers incorrect
(c) None (1)
Rates of both forward and backward reactions increased / changed (1)
by same amount (1)
Allow; Activation energy of forward and backward reactions
lowered by the same amount (1)
CE if effect wrong

30. (a) (i) Temperature change decrease (1)
Explanation exothermic reaction (1)
(ii) Pressure change decrease (1)
Explanation fewer moles of gas on l.h.s (1)

(b) (i) Temperature to increase reaction rate (1)
Pressure to increase reaction rate (1)
(ii) Reason 1 large surface area (1)
Reason 2 lower cost in expensive Pt (1)

(c) (i) enthalpy of formation (1)
(ii) standard conditions (1)
1 bar pressure and stated (fixed) temperature (1)
reactants and products in standard states (1)
(iii) Pollutants (acid rain) – NO\textsubscript{x}
produced by combustion engines
(iv) decomposition is exothermic (1)
Low T reduces effect of heat evolved (1)

(d) NO produced in Stage 3 (1)
can be recycled to Stage 2 (1)
32. (a) (i) Rates: Rates are equal, forward and backward (1)
Concentrations: Concentrations are constant (1)
Q of L mark

(ii) Equilibrium yield: Decreases (1)
if wrong allow max 1 for a correct moles statement

Explanation: More moles / molecules of product (or 2 → 4) (1)
Reaction / equilibrium moves to left / reduce constraint (1)
NOT “volume” answers
Allow one for “Reaction favours fewer molecules”

(iii) Enthalpy of reaction is positive / endothermic (1)

(iv) Both forward and backward rates changed / increased (1)
by equal amount (same proportion) (1)
allow one for “Ea of forward and backward reactions reduced
by an equal amount”
(b) (i) The reaction is exothermic (1)
High temperature gives a low equilibrium yield (1)
Rate of reaction higher at higher temperature (1)
An “equilibrium statement” needed e.g. low temp favours the reaction
Do not allow answers based on cost of higher temperature etc

(ii) Higher pressure gives a higher yield (1)
4 moles of gaseous reactant form 2 moles of gaseous product (1)
Higher pressure generation or equipment is expensive to produce (1)
Equilibrium statement required
Cost factor
N.B. NOT a safety answer

33. (a) (i) **enthalpy change** when 1 mol of a substance (or compound) (QL mark) (1)
is (completely) burned in oxygen (or reacted in excess oxygen) (1)
at 298 K and 100 kPa (or under standard conditions) (1)

(ii) heat produced = mass of water × Sp heat capacity × ΔT (or mcΔT) (1)
= 150×4.18×64 (note if mass = 2.12 lose first 2 marks then conseq) (1)
= 40100 J or = 40.1 kJ (allow 39.9-40.2 must have correct units) (1)
moles methanol = mass/M_r = 2.12/32 (1)
= 0.0663

ΔH = – 40.1/0.0663 = – 605 kJ (mol^-1)
(allow –602 to –608 or answer in J)
(note allow conseq marking after all mistakes but note use of 2.12 g loses 2 marks)

(b) (i) equilibrium shifts to left at high pressure (1)
because position of equilibrium moves to favour fewer moles (of gas) (1)

(ii) at high **temperature** reaction yield is low (or at low **T** yield is high) (1)
at low **temperature** reaction is slow (or at high **T** reaction is fast) (1)
therefore use a balance (or compromise) between rate and yield (1)
34. (a) Homogeneous; All reactants in the same phase or state (1)
Dynamic; Continuous or 'on-going' (1)
Equilibrium: Concentrations of reactants and products constant
or rates of forward and backward reactions equal (1)
Equation; $2\text{NH}_3 \rightleftharpoons \text{N}_2 + 3\text{H}_2$ (Must be decomposition) (1)
$K_c; \frac{[\text{N}_2][\text{H}_2]^3}{[\text{NH}_3]^2}$ (1)

(b) Conditions:
- decomposition favoured by high temp (1)
- since the reaction endothermic or logical statement with application of Le Chatelier's principle (1)
- decomposition favoured by low pressure (1)
- 2 mole gas giving 4 moles gas or more gas moles on right (1)

(c) In practise
- low pressure means low production (1)
- low pressure means low rate (1)
- high temperature means high rate (1)
- high temperature expensive (1)
- Catalyst equilibrium yield unaffected (1)
- rates of forward and backwards reactions increased by an equal amount (1)
- more hydrogen produced in a given time (1)

Max 6
35. (a) **Increase in temperature:**
Yield is increased (Allow if for \(H_2 \) (g) or products) (1)
Reaction endothermic (1)
Equilibrium moves to the right OR forward, OR Equilibrium moves to oppose change OR to absorb heat (1)
 If “Yield statement” incorrect allow max one if reaction stated to be endothermic

Increase in pressure:
Yield is decreased (Allow if for \(H_2 \) (g) or products) (1)
Increase in moles of gas or 2 moles increased to 4 moles or more moles on right (1)
Equilibrium moves to the left OR backwards, OR Equilibrium moves to oppose change OR to reduce pressure (1)
 If “Yield statement” incorrect allow max one if number of moles change is correct.

(b) **Equilibrium yield:**
Unaffected or equilibrium unchanged (1)
Rate or speed increased (1)
Forward and backwards reactions equally or by the same amount (1)

Amount of hydrogen produced:
More hydrogen produced (1)

36. (a) **minimum** energy (1)
required before a reaction can occur or go or start (1)

(b) speeds up (changes) reaction rate (1)
without being (chemically) changed (used up) (1)

(c) provides alternative reaction route (1)
with a lower activation energy (1)
in (b) and (c) reward 4 marks for 4 points wherever found
Concentration

Time

starts $2 \times$ plateau: allow
starts between top of axis an 'n' of concentration (1)
falls to zero when Z curve levels (1)

curve starts at origin, is left of original (1)
reaches same plateau (1)

can touch axis

(iii) fewer collisions (1)

W used up (1)

or reactants

or reagents

or fewer particles