CHAPTER 5 KINETICS

1 The gas-phase reaction between hydrogen and chlorine is very slow at room temperature.

	$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$
(a)	Define the term activation energy.
	(2 marks)
(b)	Give one reason why the reaction between hydrogen and chlorine is very slow at room temperature.
	(1 mark)
(c)	Explain why an increase in pressure, at constant temperature, increases the rate of reaction between hydrogen and chlorine.
	(2
(d)	(2 marks) Explain why a small increase in temperature can lead to a large increase in the rate of reaction between hydrogen and chlorine.
	(2 marks)
(a)	Give the meaning of the term <i>catalyst</i> .
(c)	Oive the meaning of the term catalysi.
	(1 mark)
(f)	Suggest one reason why a solid catalyst for a gas-phase reaction is often in the form of a powder.
	(1 mark)

2 The diagram below represents a Maxwell–Boltzmann distribution curve for the particles in a sample of a gas at a given temperature. The questions below refer to this sample of particles. (a) Label the axes on the diagram. (2 marks) (b) On the diagram draw a curve to show the distribution for this sample at a lower temperature. (2 marks) (c) In order for two particles to react they must collide. Explain why most collisions do not result in a reaction. (1 mark) (d) State one way in which the collision frequency between particles in a gas can be increased without changing the temperature. (1 mark) (e) Suggest why a small increase in temperature can lead to a large increase in the reaction rate between colliding particles. (2 marks) (f) Explain in general terms how a catalyst works.

(2 marks)

3 The diagram shows the Maxwell–Boltzmann distribution of molecular energies in a gas at two different temperatures.

a)	One of the axes is labelled. Complete the diagram by labelling the other axis. (1 mark)
(b)	State the effect, if any, of a solid catalyst on the shape of either of these distributions.
	(1 mark,
(c)	In the box, write the letter, V, W, X or Y, that represents the most probable energy of the molecules at the lower temperature.
	(1 mark,
d)	Explain what must happen for a reaction to occur between molecules of two different gases.

(2 marks)

(e)	Explain why a small increase in temperature has a large effect on the initial rate of a reaction.
	(1 mark)

4 The diagram shows the Maxwell–Boltzmann distribution for a sample of gas at a fixed temperature.

 E_a is the activation energy for the decomposition of this gas.

 $E_{\rm mp}$ is the most probable value for the energy of the molecules.

(a) On the appropriate axis of this diagram, mark the value of E_{mp} for this distribution.

On this diagram, sketch a new distribution for the same sample of gas at a **lower** temperature.

(3 marks)

(b)	With reference to the Maxwell–Boltzmann distribution, explain why a decrease in temperature decreases the rate of decomposition of this gas.
	(2 marks)