Q1.This question involves the use of kinetic data to deduce the order of a reaction and calculate a value for a rate constant.

The data in **Table 1** were obtained in a series of experiments on the rate of the reaction between compounds **A** and **B** at a constant temperature.

Table 1

Experiment	Initial concentration of A / mol dm ⁻³	Initial concentration of B / mol dm⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.12	0.26	2.10 × 10 ⁻⁴
2	0.36	0.26	1.89 × 10⁻³
3	0.72	0.13	3.78 × 10 _{-₃}

Show how these data can be used to deduce the rate expression for the react between ${\bf A}$ and ${\bf B}$.	iion

The data in **Table 2** were obtained in two experiments on the rate of the reaction between compounds **C** and **D** at a constant temperature.

(3)

Table 2

(a)

Experiment	Initial concentration of C / mol dm ⁻³	Initial concentration of D / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹		
4	1.9 × 10⁻²	3.5 × 10⁻²	7.2 × 10⁻⁴		
5	3.6 × 10⁻²	5.4 × 10 ⁻²	To be calculated		

The rate equation for this reaction is

$$rate = k[\mathbf{C}]^2[\mathbf{D}]$$

(b)	Use the data from experiment $\bf 4$ to calculate a value for the rate constant, $\bf k$,	at this
	temperature. Deduce the units of k.	

(c) Calculate a value for the initial rate in experiment **5**.

(d) The rate equation for a reaction is

rate = *k*[**E**]

	explain qualitatively why doubling the temperature has a much greater effect on the rate of the reaction than doubling the concentration of E .	
		(3)
(e)	A slow reaction has a rate constant $k = 6.51 \times 10^{-3} \text{ mol}^{-1} \text{ dm}^3 \text{ at } 300 \text{ K}.$	
	Use the equation $\ln k = \ln A - E_a / RT$ to calculate a value, in kJ mol ⁻¹ , for the activation energy of this reaction.	
	The constant $A = 2.57 \times 10^{10} \text{ mol}^{-1} \text{ dm}^3$. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	
	Activation energy =	
	(Total 12 ma	(2) rks)
	Group 2 metals and their compounds are used commercially in a variety of processes applications.	
(a)	State a use of magnesium hydroxide in medicine.	
		145
		(1)

Q2.

(D)		ty of the water in a lake.	
		ain why the rate of this reaction decreases when the temperature of the water in ake falls.	
			(3)
(c)	Stro	ntium metal is used in the manufacture of alloys.	
	(i)	Explain why strontium has a higher melting point than barium.	
			(2)
	(ii)	Write an equation for the reaction of strontium with water.	
	` ,		
			(1)
			(1)
<i>(</i> 1)			
(d)		nesium can be used in the extraction of titanium.	
	(i)	Write an equation for the reaction of magnesium with titanium(IV) chloride.	
			(1)

(ii	The excess of magnesium used in this extraction can be removed by reacting it with dilute sulfuric acid to form magnesium sulfate.
	Use your knowledge of Group 2 sulfates to explain why the magnesium sulfate formed is easy to separate from the titanium.
	(1 (Total 9 marks
	ing figure shows the Maxwell.Boltzmann distribution of molecular energies in a of gas at temperature ${\it T}$.
	0 Y Energy
\ /	ne of the axes is labelled. bel the other axis. (1
(b) S	tate why the curve starts at the origin.
	(1

(c)	Which of the following, A , B or C , describes what the value of Y represents in the figure? Write the correct letter, A , B or C , in the box.	
	 A The energy needed for a successful collision B The minimum energy needed for a reaction to occur C The most probable energy 	
		(1)
(d)	On the figure above, draw a distribution of molecular energies in this sample of gas at a higher temperature.	(2)
(e)	The pressure of the original sample of gas is doubled at temperature <i>T</i> . State the effect, if any, of this change on the value of Y .	
	(Total 6 mar	(1) ks)

Q4.The diagram shows the Maxwell-Boltzmann distribution of molecular energies in a gas at two different temperatures.

One of the axes is labelled. Complete the diagram by labelling the other axis. (a)

(1)

State the effect, if any, of a solid catalyst on the shape of either of these (b) distributions.

(1)

In the box, write the letter, V, W, X or Y, that represents the most probable energy (c) of the molecules at the lower temperature.

(1)

(d) Explain what must happen for a reaction to occur between molecules of two different gases.

(2)

(e)	Explain why a small increase in temperature has a large effect on the initial reaction.	rate of a
		(1) (Total 6 marks)
Q5. (a)	In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve.	
	Rate of reaction /mol dm ⁻³ s ⁻¹ Concentration of acid/mol dm ⁻³	
	The reaction of magnesium with dilute hydrochloric acid is exothermic. Use your understanding of collision theory to explain why the student did no a straight line.	t obtain

		(3
(b)	The magnesium used in a laboratory experiment was supplied as a ribbon. The ribbon was stored in an open plastic bag exposed to the air.	
	Explain why it is important to clean the surface of this magnesium ribbon when investigating the rate of its reaction with hydrochloric acid.	
		(2
(c)	Magnesium ribbon reacts with hot water. Heated magnesium ribbon reacts with steam. State two differences between these reactions.	
	Difference 1	
	Difference 2	
		(2
(4)	Pure magnesium reacts completely with an excess of dilute sulfuric acid.	
(d)	The reaction of pure calcium with an excess of dilute sulfuric acid is very rapid initially.	
	This reaction slows down and stops before all of the calcium has reacted.	
	Use your knowledge of the solubilities of Group 2 sulfates to explain why these reactions of magnesium and calcium with dilute sulfuric acid are so different.	

Q6. A student carried out an experiment to determine the rate of decomposition of hydrogen peroxide into water and oxygen gas.

The student used 100 cm³ of a 1.0 mol dm³ solution of hydrogen peroxide at 298 K and measured the volume of oxygen collected.

Curve **R**, in each of **Figures 1**, **2** and **3**, shows how the total volume of oxygen collected changed with time under these conditions.

(a) Draw a curve on **Figure 1** to show how the total volume of oxygen collected will change with time if the experiment is repeated at 298 K using 100 cm³ of a 2.0 mol dm⁻³ solution of hydrogen peroxide.

Figure 1

(2)

(b) Draw a curve on **Figure 2** to show how the total volume of oxygen collected will change with time if the experiment is repeated at 298 K using 100 cm ³ of a 0.4 mol dm⁻³ solution of hydrogen peroxide.

Figure 2

(c) Draw a curve on **Figure 3** to show how the total volume of oxygen collected will change with time if the **original** experiment is repeated at a temperature higher than 298 K.

(2)

(2)

You should assume that the gas is collected at a temperature of 298 K.

Figure 3

(d) Explain why the slope (gradient) of curve **R** decreases as time increases.

Page 12

	(Exti	ra space)											
(e)	few of The	student disc drops of aqu student foun steps as sho	eous hyond on the	drogen br Internet	omide a	re ado decor	ded to the	he so	olution	١.			
		Step 1	H_2O_2	+ HBr		→	HBrO	+	H ₂ O				
		Step 2	HBrO	+ H ₂ () ₂ —		H ₂ O	+	O ₂	+	HBr		
	(i)	Write an e	quation f	for the ov	erall read	ction.							
													(1
	(ii)	Give one rewas able to	deduce							•		dent	
													(1