Q1. The curve below shows how the volume of oxygen evolved varies with time when 50 cm³ of a 2.0 mol dm³ solution of hydrogen peroxide, H₂O₂, decomposes at 298 K.

(a) State how you could use the curve to find the rate of reaction at point A.

(1)

- (b) Sketch curves, on the above axes, to illustrate how the volume of oxygen evolved would change with time if the experiment was repeated at 298 K using the following.
 - (i) 100 cm³ of a 1.0 mol dm⁻³ solution of H₂O₂. Label this curve **X**.
 - (ii) 25 cm 3 of a 2.0 mol dm $^{-3}$ solution of H_2O_2 in the presence of a catalyst. Label this curve \mathbf{Y} .

(4)

(c) Hydrogen peroxide decomposes more rapidly in the presence of aqueous hydrogen bromide. The decomposition proceeds as shown by the following equations.

$$H_2O_2 + HBr \rightarrow HBrO + H_2O$$

 $HBrO + H_2O_2 \rightarrow H_2O + O_2 + HBr$

(i) Write an equation for the overall reaction.

(ii)	Define the term <i>catalyst</i> .
(iii)	Give two reasons, other than an increase in the reaction rate, why these equations suggest that hydrogen bromide is behaving as a catalyst.
	Reason 1
	Reason 2
	(5) (Total 10 marks)

Q2. Gas **G** decomposes as shown in the equation below.

$$G(g) \to X(g) + Y(g)$$

(a) Draw, on the axes below, a Maxwell–Boltzmann distribution curve for a sample of ${\bf G}$ in which only a small proportion of molecules has energy greater than the activation energy, ${\bf E}_{\rm a}$.

Number of molecules			
	Energy	$^{1}E_{a}$	

(3)

(b)	Define the term activation energy.	
		(2)
(c)	At any time, most of the molecules of G have energy less than the activation	
	energy. Suggest why, at a constant temperature, most of G eventually decomposes.	
		(2)
(d)	State the effect, if any, of adding a catalyst on the time required for G to decompose, compared with a similar sample without a catalyst. Explain in general terms how the catalyst has this effect.	
	Time for decomposition	
	Explanation	
	(Total 10 ma	(3) rks)

Q3. The diagram below represents a Maxwell–Boltzmann distribution curve for the particles in a sample of a gas at a given temperature. The questions below refer to this sample of particles.

(f) Explain in general terms how a catalyst works.

(2
(Total 10 marks

Q4. (a) Below is a Maxwell–Boltzmann curve showing the distribution of molecular energies for a sample of gas at a temperature T.

- (i) Label the axes on the diagram above.
- (ii) What does the area under the curve represent?
- (iii) State why this curve starts at the origin.

(4)

(b) (i) State what is meant by the term *activation energy*.

	 (ii) The rate of a chemical reaction may be increased by an increase is concentration, by an increase in temperature and by the addition of State which, if any, of these changes involves a different activation Explain your answer. Change(s)		a catalyst.	
				(5) (Total 9 marks)
Q5.		(a)	Define the term activation energy for a reaction.	
				(2)
	(b)	Give	e the meaning of the term <i>catalyst.</i>	
				(2)
	(c)	Exp	lain in general terms how a catalyst works.	
				(2)

(d) In an experiment, two moles of gas **W** reacted completely with solid **Y** to form one mole of gas **Z** as shown in the equation below.

$$2W(g) \ + \ Y(s) \ \to \ Z(g)$$

The graph below shows how the concentration of **Z** varied with time at constant temperature.

- (i) On the axes above, sketch a curve to show how the concentration of **W** would change with time in the same experiment. Label this curve **W**.
- (ii) On the axes above, sketch a curve to show how the concentration of **Z** would change with time if the reaction were to be repeated under the same conditions but in the presence of a catalyst. Label this curve **Z**.
- (iii) In terms of the behaviour of particles, explain why the rate of this reaction decreases with time.

(Total 12 marks)