M1. (a) Gradient (or slope) (or draw a tangent)

1

(b) (i) Curve **X** is lower and starts at origin

1

And levels out at same volume as original curve

1

(ii) Curve Y is steeper than original and starts at origin

1

Then levels out at half the volume of the original

1

(c) (i) $2H_2O_2 \rightarrow 2H_2O + O_2$

1

(ii) Speeds up (alters the rate of) a chemical reaction

1

Remains unchanged (or not used up)

1

(iii) Remains unchanged (or not used up or not in the overall reaction equation)

1

Offers alternative reaction route (or acts as an intermediate)

[10]

M2. (a) Graph starts at origin

1

Graph skewed to left and has decreasing gradient to maximum

1

Graph after maximum decreases in steepness, never touches *x* axis, levels out less than 5 mm from *x* axis.

1

(b) Minimum energy 1 To start a reaction (or for a reaction to occur) 1 (c) Molecules gain energy (or always some molecules have $E > E_a$) 1 Due to collisions 1 (d) **Decreases** 1 E_a lowered (1) By alternative route (1) So more molecules have energy > E_a (1) max 2 [10]

2

- (b) See above
- (c) Energy < E_a or must have enough energy (to react) (1)

1

2

(d) Increase concentration (or pressure) (1)

1

(e) Many (1) more molecules have E > E_a / enough energy (1)

NOT KE increases with T

2

2

(f) Lowers E_a (1) alternative route (1)

[10]

(ii) The total number of particles (or molecules) in the sample

OR the number of molecules present

		(iii)	No molecules have no energy OR all molecules have some energy Do not allow "if there are no molecules there is no energy"	4	
	(b)	(i)	The minimum energy required (1) for a reaction to occur (1) OR to start reaction or for a successful collision		
		(ii)	Changes: Catalyst (1) Explanation: Alternative route (1), with a lower activation energy (1) OR a lower activation energy (1) so more molecules can react (1)/more molecules have this energy If change incorrect CE = 0 Allow answers anywhere in b (ii)	5	[9]
M 5.		(a) requ	<u>minimum</u> energy (1) uired before a reaction can occur or go or start (1)	2	
	(b)		eds up (changes) reaction rate (1) out being (chemically) changed (used up) (1)	2	
	(c)		vides alternative reaction route (1) a lower activation energy (1)		

(d) (i)

(ii)

(iii) fewer collisions (1)
W used up (1)

or reactants
or reagents
or fewer particles

[12]