CHAPTER 4 ENERGETICS

A student used Hess's Law to determine a value for the enthalpy change that occurs 1 when anhydrous copper(II) sulfate is hydrated. This enthalpy change was labelled $\Delta H_{\rm exp}$ by the student in a scheme of reactions.

(a)	State Hess's Law.	
		(1 mark)
(b)	Write a mathematical expression to show how $\Delta H_{\rm exp}$, $\Delta H_{\rm 1}$ and $\Delta H_{\rm 2}$ are related other by Hess's Law.	to each
		(1 mark)
(c)	Use the mathematical expression that you have written in part (b), and the data values for the two enthalpy changes ΔH_1 and ΔH_2 shown, to calculate a value of	
	$\Delta H_1 = -156 \text{ kJ mol}^{-1}$ $\Delta H_2 = +12 \text{ kJ mol}^{-1}$	
		(1 mark)

(d)	The student added 0.0210 mol of pure anhydrous copper(II) sulfate to 25.0 cm ³ of deionised water in an open polystyrene cup. An exothermic reaction occurred and the temperature of the water increased by 14.0 °C.			
(i)	Use these data to calculate the enthalpy change, in kJ mol $^{-1}$, for this reaction of copper(II) sulfate. This is the student value for ΔH_1			
	In this experiment, you should assume that all of the heat released is used to raise the temperature of the 25.0 g of water. The specific heat capacity of water is $4.18\mathrm{JK^{-1}g^{-1}}$.			
	(3 marks)			
(ii)	Suggest one reason why the student value for ΔH_1 calculated in part (d) (i) is less accurate than the data book value given in part (c).			
	(1 mark)			
(e)	Suggest one reason why the value for $\Delta H_{\rm exp}$ cannot be measured directly.			
	(1 mark)			

2	Hydrazine (N ₂ H ₄) decor exothermically with hyd					also reacts	
(a)	Write an equation for th	e decompos	sition of hyd	Irazine into a	ammonia ar	nd nitrogen o	nly.
						(1)	mark)
(b)	State the meaning of the	e term <i>mea</i>	n bond enti	nalpy.			
						(2 m	 narks)
(c)	Some mean bond entha	alpies are gi	ven in the ta	able.			
		N-H	N-N	N≡N	О-Н	0-0	
	Mean bond enthalpy /kJ mol ⁻¹	388	163	944	463	146	
	Use these data to calculudate hydrazine and hydroger		halpy chang	ge for the ga	s-phase rea	action betwe	en
	H H +	2 H-O-	-О-Н —	→ N≡N	+ 4	н-0-н	
						(3 m	arks)

(a)	State the meaning of the term <i>enthalpy change</i> .	
		(1
(b)	State Hess's Law.	
		(1
(c)	Consider the following table of data and the scho	eme of reactions.
	Reaction	Enthalpy change/kJ mol ⁻¹
	$HCl(g) \longrightarrow H^{+}(aq) + Cl^{-}(aq)$	-75
	$H(g) + Cl(g) \longrightarrow HCl(g)$	-432
	$H(g) + Cl(g) \longrightarrow H^+(g) + Cl^-(g)$	+963
	ΔH_{Γ}	
	$H^{+}(g) + Cl^{-}(g) \xrightarrow{\Delta H_{r}} H^{+}(ac)$	q) + CF(aq)
	$H(g) + Cl(g) \longrightarrow$	HCl(g)
	Use the data in the table, the scheme of reactions for $\Delta H_{\rm r}$	s and Hess's Law to calculate a v

(3 marks)

4	(a)	Define the term standard enthalpy of combustion, ΔH_c^{Θ}						
								(3 marks)
	(b)	Use the mean bond enthalpy calculate a value for the stan are in the gaseous state.						
		Bond	C=C	С—С	С—Н	0=0	o=c	О—Н
		Mean bond enthalpy/kJ mol ⁻¹	612	348	412	496	743	463
		H H H H-C-C=C + H H	4½ O=0	→ 3	O=C=() + 3	н-о-н	
								(3 marks)
	(c)	State why the standard entha	lpy of for	mation, $\Delta \lambda$	$H_{\rm f}^{\Theta}$, of ox	ygen is ze	ero.	
					••••••			(1 mark)

(d) Use the data from the table below to calculate a more accurate value for the standard enthalpy of combustion of propene.

Compound	C ₃ H ₆ (g)	CO ₂ (g)	H ₂ O(g)	
Standard enthalpy of formation, $\Delta H_{\rm f}^{\Theta}/$ kJ mol ⁻¹	+20	-394	-242	
			(3 marks)	
(e) Explain why your answer to part (b) is part (d).				

(2 marks)