Q1.	Barium can be extracted from barium oxide (BaO) in a process using aluminium
	A mixture of powdered barium oxide and powdered aluminium is heated strongly.
	The equation for this extraction process is shown below.

$$3BaO(s) + 2AI(s) \rightarrow 3Ba(s) + AI_2O_3(s)$$

Some standard enthalpies of formation are given in the table below.

Substance	BaO(s)	$AI_2O_3(s)$
ΔH ,° / kJ mol ⁻¹	– 558	-1669

(a)	(i)	State what is meant by the term standard enthalpy of formation.	
			(2)
			(3)
	(ii)	State why the standard enthalpy of formation of barium and that of aluminium are both zero.	
			(1)
	(iii)	Use the data to calculate the standard enthalpy change for the reaction shown by the equation above.	

(3)

		(Total 14 m	(2) arks)
	(iii)	State how barium sulfate can be used in medicine. Explain why this use is possible, given that solutions containing barium ions are poisonous. Use	
		Observation	(2)
		Write the simplest ionic equation for the reaction which occurs and state what is observed. Simplest ionic equation	
	(ii)	A solution containing barium ions can be used to test for the presence of sulfate ions in an aqueous solution of sodium sulfate.	
			(1)
(c)	(i)	Write an equation for the reaction of barium with water.	(1)
	()	reactants. Suggest one reason why this increases the rate of reaction.	(4)
	(ii)	Using barium oxide and aluminium powders increases the surface area of the	(1)
(b)	(i)	Suggest the major reason why this method of extracting barium is expensive.	

٧٧.		me co	ornbustion of flydrocarbons is an	important	source or e	energy.		
	(a)	Defi	ne the term standard enthalpy of	combustio	n.			
								(3)
	(b)	(i)	Write an equation for the comp	lete combu	stion of et	thane, C₂F	-1 ₆ .	
		(ii)	Use the standard enthalpies of standard enthalpy of combustio			w to calcu	late the	
	F	ormula	a and state of compound	$C_2H_6(g)$	CO ₂ (g)	H ₂ O(I)]	
Standard enthalpy of formation (at 298 K)/kJ mol⁻¹			-85	-394	-286			
				•			<u>.</u>	
								(4)
	(c)	meth meth	ntainer and its contents of total h ane burner. Calculate the maxim ane was completely burned. The 90 kJ mol⁻¹.	um theoret	ical tempe	erature ris	e when 0.10 g o	f
							(Total 11 ı	(4) marks)

Q3 .	(a)	Define the term standard enthalpy of combustion, ΔH_c^{Θ}	
			(3)

(b) Use the mean bond enthalpy data from the table and the equation given below to calculate a value for the standard enthalpy of combustion of propene. All substances are in the gaseous state.

Bond	C == C	C—C	С—Н	O == O	O == C	О—Н
Mean bond enthalpy/ kJ mol⁻¹	612	348	412	496	743	463

(c) State why the standard enthalpy of formation, $\Delta H_{\rm r}^{\rm e}$, of oxygen is zero.

(3)

(1)

(d) Use the data from the table below to calculate a more accurate value for the standard enthalpy of combustion of propene.

Compoun	ıd	C₃H₅(g)	CO₂(g)	H ₂ O(g)		
Standard enthalpy of formation, ∆ <i>H</i> _f ⁹ / kJ mol⁻¹		+20	-394	-242		
						(3)
(e)	Explain why your answer part (d).	to part (b) is	a less accurate	value than yo	our answer to)
					(Total	(2) 12 marks)
Q4. (a)	Define the term standard e	nthalpy of fori	mation, ∆H;°			
						(3)
(b)	Use the data in the table methylbenzene, C₁H₅	to calculate tl	ne standard entl	nalpy of forma	ation of liquic	I
	Substance		C(s)	H ₂ (g)	$C_7H_8(I)$	

(3)

(4)

$$7C(s) + 4H_2(g) \rightarrow C_7H_8(I)$$

.....

(c) An experiment was carried out to determine a value for the enthalpy of combustion of liquid methylbenzene using the apparatus shown in the diagram.

Burning 2.5 g of methylbenzene caused the temperature of 250 g of water to rise by 60°C. Use this information to calculate a value for the enthalpy of combustion of methylbenzene, C_7H_8

(The specific heat capacity of water is 4.18 J K⁻¹ g⁻¹. Ignore the heat capacity of the container.)

(d) A 25.0 cm³ sample of 2.00 mol dm⁻³ hydrochloric acid was mixed with 50.0 cm³ of a 1.00 mol dm⁻³ solution of sodium hydroxide. Both solutions were initially at 18.0 °C.

After mixing, the temperature of the final solution was 26.5°C.

Use this information to calculate a value for the standard enthalpy change for the following reaction.

 $HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H₂O(I)$

	that its specific heat capacity is the same as that of water. (Ignore the heat capacity of the container.)	
		(4)
(e)	Give one reason why your answer to part (d) has a much smaller experimental error than your answer to part (c).	
	(Total 15 m	(1) arks)