(i)	Balance the following equation for this reaction of glucose to form propanone, carbon dioxide and water.	
	\dots $C_6H_{12}O_6 \longrightarrow \dots CH_3COCH_3 + \dots CO_2 + \dots H_2O$	(1)
(ii)	Deduce the role of the bacteria in this reaction.	
		(1)
Prop	panone is also formed by the oxidation of propan-2-ol.	
(i)	Write an equation for this reaction using [O] to represent the oxidising agent.	
(ii)	State the class of alcohols to which propan-2-ol belongs.	(1)
		(1)
was I calor The s 4.50 Use I when	burned. The heat produced was used to warm some water in a copper imeter. student found that the temperature of 150 g of water increased by 8.0 °C when × 10 ⁻³ mol of pure propanone was burned in air. the student's results to calculate a value, in kJ mol ⁻¹ , for the enthalpy change in one mole of propanone is burned.	
(The	specific heat capacity of water is 4.18 J K ⁻¹ g ⁻¹)	
	abse (i) (ii) (ii) A stu was calor The state of the stat	carbon dioxide and water. C ₆ H ₁₂ O ₆ →CH ₃ COCH ₃ +CO ₂ +H ₂ O (ii) Deduce the role of the bacteria in this reaction. Propanone is also formed by the oxidation of propan-2-ol. (i) Write an equation for this reaction using [O] to represent the oxidising agent. (ii) State the class of alcohols to which propan-2-ol belongs. A student determined a value for the enthalpy change when a sample of propanone was burned. The heat produced was used to warm some water in a copper calorimeter. The student found that the temperature of 150 g of water increased by 8.0 °C when 4.50 × 10 ⁻³ mol of pure propanone was burned in air. Use the student's results to calculate a value, in kJ mol ⁻¹ , for the enthalpy change when one mole of propanone is burned. (The specific heat capacity of water is 4.18 J K ⁻¹ g ⁻¹)

Define the term standa	rd enth	nalpy o	f comb	ustion				
								•••
			•••••					•••
Use the mean bond ent								
Use the mean bond ent able to calculate a value propanone is burned.		e stand						
able to calculate a valu	e for the	e stand	ard entl	halpy cl	hange v	when g		
able to calculate a value propanone is burned. Mean bond	C-H 412	C-C 348	C-O 360	о-н 463	C=O 805	O=O 496	aseous	

(3)

(f)	Suggest two reasons why the value obtained by the student in part (c) is different from the value calculated in part (e).
	Reason 1
	Reason 2
	(2 (Total 15 marks
Q2. A valu	ne for the enthalpy of combustion of an alcohol can be determined using the apparatus wn in the diagram. The calorimeter is held in position by a clamp.
	A
	Thermometer
	300 cm ³ copper calorimeter
	Water
	Spirit burner Alcohol
a m	s experiment can be repeated by using a different volume of water that would result in ore accurate value for the enthalpy of combustion because there would be a reduction he heat lost.
	te a change in the volume of water that would cause a reduction in heat loss and lain your answer.
Cha	inge in volume:
Exp	lanation:

(1)

Q3.The figure below shows apparatus used in an experiment to determine the enthalpy of combustion of leaf alcohol.

The alcohol is placed in a spirit burner and weighed. The burner is lit and the alcohol allowed to burn for a few minutes. The flame is extinguished and the burner is re-weighed. The temperature of the water is recorded before and after heating.

The following table shows the results obtained.

Initial mass of spirit burner and alcohol / g	56.38
Final mass of spirit burner and alcohol / g	55.84
Initial temperature of water / °C	20.7
Final temperature of water / °C	40.8

(a)	Write an equation for the complete combustion of leaf alcohol (CH ₃ CH ₂ CH=CHCH ₂ CH ₂ OH).

(b)	Use the results from the table above to calculate a value for the enthalpy of combustion of leaf alcohol. Give units in your answer. (The specific heat capacity of water is 4.18 J K ⁻¹ g ⁻¹)	
	Enthalpy of combustion = Units =	
	Entraipy of combustion – Onits –	(4)
(c)	State how your answer to part (b) is likely to differ from the value quoted in reference sources. Give one reason for your answer.	
		(2)
(d)	A 50.0 g sample of water was used in this experiment.	
	Explain how you could measure out this mass of water without using a balance.	

(5)

Ω4	Ethanol	is an	important	fuel
W T	. – (1 141 141	io aii	IIIIDOI laii	iuci.

(a) A dilute aqueous solution of ethanol can be produced by the fermentation of an aqueous solution of glucose.It is claimed that the ethanol obtained from this solution is a carbon-neutral biofuel.

Write an equation for this fermentation reaction.

Give **two** other essential conditions for this reaction to produce a good yield of ethanol.

Name a process used to produce a much more concentrated solution of ethanol from a dilute aqueous solution.

State the meaning of the term carbon-neutral in the context of this biofuel.
(Extra space)

(b) A student carried out a laboratory experiment to determine the enthalpy change when a sample of ethanol was burned. The heat produced was used to warm some

water in a copper calorimeter. The student found that the temperature of 75.0 g of water increased by 5.50 °C when 2.40×10^{-3} mol of pure ethanol was burned in air.

Use the student's results to calculate a value, in kJ mol $^{-1}$, for the enthalpy change when one mole of ethanol is burned. (The specific heat capacity of water is 4.18 J K $^{-1}$ g $^{-1}$)

Ded com	luce two reasons why the student's value for the standard enthalpy of abustion of ethanol is different from a Data Book value of –1279 kJ mol ⁻¹ .	
(Ext	ra space)	
		(
Mea	an bond enthalpies can be used to calculate enthalpies of reaction.	
(i)	Give the meaning of the term mean bond enthalpy .	

(c)

(Total 15 marks)

(ii) Consider the mean bond enthalpy data in the following table.

	С—Н	с—с	с—о	O=O	C=O	О—Н
Mean bond enthalpy / kJ mol ⁻¹	412	348	360	to be calculated	805	463

Use the data in the table above and the equation shown to calculate a value for the bond enthalpy for the O=O double bond in an oxygen molecule.

$CH_3CH_2OH(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(g) \Delta H = -1279 \text{ kJ mol}^{-1}$	

Q5.A 5.00 g sample of potassium chloride was added to 50.0 g of water initially at 20.0 °C. The

mixture was stirred and as the potassium chloride dissolved, the temperature of the

(a) Describe the steps you would take to determine an accurate minimum temperature that is **not** influenced by heat from the surroundings.

solution decreased.

(4)
()
(4)
t

(d)	Explain why your answer to part (c) is different from the lattice enthalpy of dissociation for magnesium chloride.	f
		(2)
		(Total 12 marks)

Lattice enthalpy of dissociation =kJ mol⁻¹

(2)