
Q1. (a) The table below contains some mean bond enthalpy data.

Bond	H–O	0–0	O=O
Mean bond enthalpy/kJ mol⁻¹	463	146	496

The bonding in hydrogen peroxide, H_2O_2 , can be represented by H–O–O–H. Use these data to calculate the enthalpy change for the following reaction.

$$H_2O_2(g) \rightarrow H_2O_2(g) + \frac{1}{2}O_2(g)$$

(3)

(c) The enthalpy changes for the formation of atomic hydrogen and atomic carbon from their respective elements in their standard states are as follows.

$$\frac{1}{2} H_2(g) \rightarrow H(g) \qquad \Delta H^{\bullet} = +218 \text{ kJ mol}^{-1}$$

$$C(s) \rightarrow C(g) \qquad \Delta H^{\bullet} = +715 \text{ kJ mol}^{-1}$$

(i) By reference to its structure, suggest why a large amount of heat energy is required to produce free carbon atoms from solid carbon.

,	Use thes		Hess's Lav				thalpy chan	
		CH₄(g) –	→ C(g) + 4ŀ	H(g)				
(om part (c) ond in met	(ii) to calcu hane.	late a value	e for the me	ean bond	
								a
							(Total	10 marks
Q2. (a	a) Define the	term <i>stan</i> e	dard entha	lpy of comb	oustion, ∆H	Θ c		
								(:
	Use the mean calculate a valu are in the gase	ue for the s						
Bond		C == C	C—C	С—Н	O == O	O == C	О—Н	
Mean bond kJ mol ⁻	enthalpy/	612	348	412	496	743	463	
		-	-	-	-	-	-	

	H—C-	H H 	$4\frac{1}{2}$ 0 ==	0 → 3 (0-0-0	+	3
(c)	State why the standard e	nthalpy of forr	mation, $\Delta H_{ m r}^{ m e}$, of	oxygen is zero) .		(3)
						((1)
(d)	Use the data from the tak standard enthalpy of com			e accurate valu	e for the		
mpound	t	C₃H₅(g)	CO ₂ (g)	H₂O(g)			
ndard o	enthalpy of formation, $\Delta H_{\scriptscriptstyle f}$	+20	-394	-242			
						((3)
(e)	Explain why your answer part (d).	to part (b) is a	a less accurate	value than yo	ur answer to		

(Total 12 marks)

(5)

Q3. (a) Explain the meaning of the terms *mean bond enthalpy* and *standard enthalpy* of formation.

Mean bond enthalpy
Standard enthalpy of formation

(b) Some mean bond enthalpies are given below.

Bond	N–H	N-N	N≡N	H–O	0–0
Mean bond enthalpy/kJ mol⁻¹	388	163	944	463	146

Use these data to calculate the enthalpy change for the following gas-phase reaction between hydrazine, N_2H_4 , and hydrogen peroxide, H_2O_2

(c) Some standard enthalpies of formation are given below.

	$N_2H_4(g)$	H ₂ O ₂ (g)	H₂O(g)
ΔH _f /kJ mol⁻¹	+75	-133	-242

These data can be used to calculate the enthalpy change for the reaction in part (b).

$$N_2H_4(g) + 2H_2O_2(g) \rightarrow N_2(g) + 4H_2O(g)$$

(1)	State the value of ΔH_i^* for $N_2(g)$.

(ii)	Use the ΔH_r^{e} values from the table to calculate the enthalpy change for this reaction.

 •••••	 •••••

(d) Explain why the value obtained in part (b) is different from that obtained in part (c)(ii).

(Total 13 marks)

(4)

(3)

Q4.Use the information below to answer this question.

$$C(s) + O_{2}(g) \rightarrow CO_{2}(g) \qquad \Delta H^{\bullet} = -394 \text{ kJ mol}^{-1}$$

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{2}O(I) \qquad \Delta H^{\bullet} = -286 \text{ kJ mol}^{-1}$$

$$4C(s) + 5H_{2}(g) \rightarrow C_{4}H_{10}(g) \qquad \Delta H^{\bullet} = -126 \text{ kJ mol}^{-1}$$

The standard enthalpy of combustion of butane, in kJ mol⁻¹, is

- **A** -2880
- **B** -2590
- **C** -806
- **D** -554

(Total 1 mark)

Q5.This question is about the reaction given below.

$$CO(g) + H_2O(g) \Longrightarrow CO_2(g) + H_2(g)$$

Enthalpy data for the reacting species are given in the table below.

Substance	CO(g)	H₂O(g)	CO ₂ (g)	H₂(g)
ΔH [♠] / kJ mol⁻¹	-110	-242	-394	0

The standard enthalpy change for this reaction of carbon monoxide and steam is

- **A** +42 kJ mol⁻¹
- **B** −42 kJ mol⁻¹
- **C** +262 kJ mol⁻¹
- **D** −262 kJ mol⁻¹

(Total 1 mark)

(a)	met 150	An experiment was conducted to determine the enthalpy of combustion of liquid methanol. The energy obtained from burning 2.12 g of methanol was used to heat 150 g of water. The temperature of the water rose from 298 K to 362 K. (The specific heat capacity of water is 4.18 J K $^{-1}$ g $^{-1}$)						
	(i)	Define the term standard enthalpy of combustion.						
	(ii)	Use the data above to calculate a value for the enthalpy of combustion of one mole of liquid methanol.	(7)					
(b)		thanol can be synthesised from methane and steam by a process that occurs in stages.						
		Stage 1 $CH_4(g) + H_2O(g) = 3H_2(g) + CO(g)$ $\Delta H^6 = +206 \text{ kJ mol}^{-1}$						
		Stage 2 $CO(g) + 2H_2(g) = CH_3OH(g)$ $\Delta H^e = -91 \text{ kJ mol}^{-1}$						
	(i)	Explain why, in <i>Stage 1</i> , a higher yield of hydrogen and carbon monoxide is not obtained if the pressure is increased.						
	(ii)	Stage 2 is carried out at a compromise temperature of 500K. By considering what would happen at higher and lower temperatures, explain why 500 K is considered to be a compromise for Stage 2.	(5)					
(c)	–28: chai	e standard enthalpies of combustion of carbon monoxide and of hydrogen are 3 kJ mol ⁻¹ and –286 kJ mol ⁻¹ , respectively. Use these data and the enthalpy nge for <i>Stage 2</i> to calculate a value for the standard enthalpy of combustion of eous methanol.	(3)					

Q6.

Methanol, CH₃OH, is a convenient liquid fuel.

 •
 •
•
•
(Total 15 marks)
•