_		
11	1	
w	- 1	

Which molecule is not able to form a co-ordinate bond with another species?

- **A** BH₃
- B CH₄
- C NH₃
- D H₂O

(Total 1 mark)

Q2.

Which species has a square planar shape?

- **A** NH₄+
- B SF₄
- C XeF₄
- D PCl₄⁺

(Total 1 mark)

Q3.

Which bond has the most unsymmetrical electron distribution?

- **A** H–O
- B H-S
- C H-N
- D H-P

(Total 1 mark)

Q4	•								
	Which statement about inorganic ionic compounds is always correct?								
	A	They dissolve in wa	ater to give n	eutral solutions.	0				
	В	They release energ	y when they	melt.	0				
	С	They contain metal	cations.		0				
	D	They form giant stru	uctures.		0				
						(Total 1 mark)			
Q5	.								
	Whi	ch species has a lon	e pair of elec	ctrons on the cen	tral atom?				
	Α	CO ₂	0						
	В	SO ₂	0						
	С	PCI ₆ -	0						
	D	SO ₄ ² -	0						
						(Total 1 mark)			
Q6) .								
	In w	hich substance do c	ovalent bond	ds break when it r	nelts?				
	Α	hexane		0					
	В	ice		0					
	С	iodine		0					
	D	silicon dioxide		0					
						(Total 1 mark)			

Q7									
	In which molecule are all the atoms in the same plane?								
	Α	CH₃CHO		0					
	В	CH ₃ NH ₂		0					
	С	C ₆ H₅Cl		0					
	D	C ₆ H ₅ CH ₃		0					
						(Total 1 mark)			
Q8									
Qυ		ch molecule has a p	ermanent dip	oole?					
	Α	BF ₃	0						
	В	NH ₃	0						
	С	SiCl ₄	0						
	D	SO₃	0						
						(Total 1 mark)			
00									
Q9		ch substance contai	ins delocalise	ed electrons?					
	Α	cyclohexane		0					
	В	graphite		0					
	С	iodine		0					
	D	sodium chloride		0					
						(Total 1 mark)			

Q1		ch polymer has hy	drogen bonding	betv	ween the polymer chains?		
	Α	Kevlar	[0]		
	В	PVC	[0]		
	С	poly(phenylethen	e) [0]		
	D	Terylene	[0]		
						(Total 1 ma	ırk
Q1		question is about	shapes of molec	cule	s and ions.		
	Dra	w the shape of NC	I ₃ and of NCI ₄ +				
	Incl	ude any lone pairs	of electrons that	t infl	uence the shape.		
	Nan	ne the shape of NO	Cl ₃				
	Stat	e and explain the	bond angle in N0	Cl ₄ +			
			Shape of NCI ₃		Shape of NCI ₄ +		
	Nan	ne of shape of NC	3				
	Bon	d angle in NCl₄⁺					
	Ехр	lanation of bond a	ngle in NCl ₄ +				

		(Total 5 mar
12.		
•	ch compound contains	a co-ordinate bond?
Α	HF	0
В	NH ₃	0
С	CHCl₃	0
D	NH ₄ CI	0
		(Total 1 ma
42		
1 3. This	question is about per	tan-2-ol and pent-1-ene.
(a)	The boiling point of property that The boiling property that The	pentan-2-ol is 119 °C pent-1-ene is 30 °C
	Explain why pentan-	2-ol has a higher boiling point than pent-1-ene.
	-	
(b)	Pent-1-ene is forme	by the elimination of water from pentan-2-ol.
	State the reagent ar	d condition for this reaction.
	Outline the mechani	sm for this reaction.

Outline of mechanism

		(5)
(Total	8	marks)

Q1	4.
----	----

The melting point of 2	XeF₄ is higher than th	ne melting point of PF:
------------------------	------------------------	-------------------------

Explain why the melting points of these two compounds are different.

In your answer you should give the shape of each molecule, explain why each molecule has that shape and how the shape influences the forces that affect the melting point.

(Total 6 marks)

(2)

Q15. Whi	ch has a bond angle c	f 109.5°?				
A	C (diamond)		0			
В	C (graphite)		0			
С	NH ₂ -		0			
D	NH ₃		0			
					(Total 1 mark)
Q16.	augustian is about con	anaunda th	nat aantain fl	Jorina		
(a)	S question is about con Sodium fluoride con Na+ and F- have the	tains sodiu	m ions (Na+)	and fluoride i	ons (F-).	
	Explain why a fluorid	de ion is laı	rger than a s	odium ion.		
						(2)
(b)	Explain, in terms of structure fluoride is high.	structure a	nd bonding,	why the meltir	ng point of s	odium

(c)	The ion H ₂ F+ is formed when hydrogen fluoride gains a proton as shown in
	the equation

$$HF + H^+ \rightarrow H_2F^+$$

Name the type of bond formed when HF reacts with H^{+} Explain how this bond is formed.

Type of bond			
Explanation			

(2)

(d) Fluoroantimonic acid contains two ions, SbF_{6}^{-} and $H_{2}F^{+}$

Draw the shape of the SbF_{6}^- ion and the shape of the H_2F^+ ion. Include any lone pairs that influence the shape.

Name the shape of each ion.

	SbF ₆ -	H ₂ F+
Shape		
Name of shape		

(4)

(e) Hydrogen fluoride reacts with ethyne (C_2H_2) as shown in the equation. All compounds are in the gaseous state.

$$H-C \equiv C-H + 2H-F \longrightarrow H-C-C-F$$

$$\downarrow \qquad \qquad \Delta H = -179 \text{ kJ mol}^{-1}$$

$$H \qquad F$$

The table shows some mean bond enthalpy data.

Bond	C–H	C≡C	H–F	C–C
Mean bond enthalpy / kJ mol ⁻¹	412	837	562	348

Use the data in the table above to calculate a value for the bond enthalpy of a C–F bond in the product.

C–F bond enthalpy _____ kJ mol⁻¹

(3)

(Total 13 marks)

Q1		ch substance has delocalised ele	ectrons?		
	Α	graphite	0		
	В	iodine	0		
	С	sodium chloride	0		
	D	tetrachloromethane	0		
					(Total 1 mark)
04	^				
Q1		ch change occurs when water is	vaporised?		
	• • • • • • • • • • • • • • • • • • • •	on onlying coodic whom water to	vaponood.		
	A	An exothermic change occurs.		0	
	В	Covalent bonds are broken.		0	
	С	Intermolecular forces are overce	ome.	0	
	D	The total energy of the molecule	es decreases.	0	
					(Total 1 mark)
Q1	_		ilia a a aintO		
	vvrii	ch compound has the highest bo	olling point?		
	A	CH ₃ CH ₂ CH ₂ Br	0		
	В	CH ₃ CH ₂ CH ₂ F	0		
	С	CH ₃ CH ₂ CHO	0		
	D	CH ₃ CH ₂ COOH	0		
					(Total 1 mark)

•	•	-	
7	٠,	"	
w	_	.,	

This question is about structure and bonding.

(a) Draw a diagram to show the strongest type of interaction between two molecules of ethanol (C₂H₅OH) in the liquid phase.

Include all lone pairs and partial charges in your diagram.

(3)

(c) Methoxymethane (CH₃OCH₃) is an isomer of ethanol.

The table shows the boiling points of ethanol and methoxymethane.

Compound	Boiling point / °C
ethanol	78
methoxymethane	-24

In terms of the intermolecular forces involved, explain the difference in boiling points.	

(3)

(c)	Draw the shape of the POCl₃ molecule and the shape of the ClF₄⁻ ion. Include any lone pairs of electrons that influence the shapes.				
	In a POCI ₃ molecule the oxygen atom is attached to the phosphorus atom by a double bond that uses two electrons from phosphorus.				
	Name each shape.				
	Suggest a value for the bond angle	in ClF₄⁻			
	Shape of POCl₃	Shape of CIF ₄			
	Chape of 1 Cols	Chape of the			
	Name of shape of POCl ₃				
	Name of shape of CIF ₄ ⁻				
	Bond angle in CIF ₄				
			(-	(5) Fotal 11 marks)	
			(iotai ii illaiks)	
Q21.					
Whi	ch is not responsible for conduction o	f electricity?			
Α	The sodium ions in molten sodium ch	nloride	0		
В	The electrons between layers of carb graphite	on atoms in	0		
С	The bonding electrons in a metal		0		
D	The lone pair electrons on water mol	ecules	0		
				(Total 1 mark)	

(2)

$\boldsymbol{\cap}$	1	1	
u	Z	Z	

This question is about compounds containing fluorine.

))	Draw the shape of a molecule of krypton difluoride (KrF_2). Include in your answer any lone pairs of electrons that influence the shape. Name the shape produced by the atoms in a KrF_2 molecule and suggest a bond angle.	
	Name of shape	
	Bond angle	
)	There are two lone pairs of electrons on the oxygen atom in a molecule of oxygen difluoride (OF_2).	
	Explain how the lone pairs of electrons on the oxygen atom influence the bond angle in oxygen difluoride.	

(c)

Silicon tetrafluoride (SiF ₄) is a tetrahedral molecule.	
Deduce the type of intermolecular forces in SiF ₄ Explain how this type of intermolecular force arises and why no other type of intermolecular force exists in a sample of SiF ₄)
Intermolecular forces in SiF ₄	_
Explanation	
	_
	_
	_
	_
	_
	_
	_
(Total 8	3 mar

Q23.

Which row shows the bonding in ammonium chloride?

	Covalent	Dative covalent	Ionic	
Α	✓	X	×	0
В	✓	✓	Х	0
С	✓	✓	✓	0
D	Х	Х	✓	0

(Total 1 mark)

Q24.						
Wh	ich molecule does n	ot have a per	manent dipole	?		
Α	CH₃Br		0			
В	CH ₂ Br ₂		0			
С	CHBr ₃		0			
D	CBr ₄		0			
					(Total 1 i	mark)
Q25. This	s question is about i	ntermolecular	forces.			
(a)	Give the meaning	of the term e	lectronegativi	y.		
						(1)
(b)	Explain how perm chloride molecule	nanent dipole- s.	dipole forces	arise between h	nydrogen	
						(2)

(c) Complete the table by naming the shape of each molecule.

Place a tick (\checkmark) in the final column if the molecule has a permanent dipole.

Molecule	Name of shape	Tick (✓) if molecule has a permanent dipole
SiH ₄		
PH ₃		
BeCl ₂		
CH₃CI		

(4)

(Total 7 marks)

Q26.

Which is the correct crystal structure for the substance named?

	Substance	Structure	
Α	lodine	Simple molecular	0
В	Diamond	Ionic	0
С	Sodium chloride	Giant covalent	0
D	Graphite	Metallic	0

(Total 1 mark)

Q27.

Which compound has the highest boiling point?

- A CH₃CH₂CH₂OH
- B CH₃CH₂CHO ○
- C CH₃COCH₃
- D CH₃COOCH₃