Q1.	(a)	(i) Define the term <i>relative atomic mass</i> (A _r) of an element.	
			(2)
	(ii)	A sample of the metal silver has the relative atomic mass of 107.9 and exists as two isotopes. In this sample, 54.0% of the silver atoms are one isotope with a relative mass of 107.1	
		Calculate the relative mass of the other silver isotope.	
		State why the isotopes of silver have identical chemical properties.	
			(4)
(b)	The	e isotopes of silver, when vaporised, can be separated in a mass spectrometer.	
		ne the three processes that occur in a mass spectrometer before the vaporised opes can be detected.	
	Stat	e how each process is achieved.	

		(6)
		(-,
(c)	State the type of bonding involved in silver.	
	Draw a diagram to show how the particles are arranged in a silver lattice and show the charges on the particles.	
		(3)
		(3)
(d)	Silver reacts with fluorine to form silver fluoride (AgF).	
	Silver fluoride has a high melting point and has a structure similar to that of sodium chloride.	
	State the type of bonding involved in silver fluoride.	
	Draw a diagram to show how the particles are arranged in a silver fluoride lattice	

		and	show the charges on the particles.	
		Exp	lain why the melting point of silver fluoride is high.	
				(5
			(Total 20 m	
20		(-)	When the resigning is added to an appropriate of companies of the ride. Over	
Q2 .			When aluminium is added to an aqueous solution of copper(II) chloride, CuCl ₂ , per metal and aluminium chloride, AlCl ₃ , are formed. Write an equation to	
		repr	esent this reaction.	
				(1
	(b)	(i)	State the general trend in the first ionisation energy of the Period 3 elements	
	(-)	(-)	from Na to Ar.	
			110 to / ti.	

	(ii)	State how, and explain why, the first ionisation energy of aluminium do follow this general trend.	oes not
			(4)
(c)		ve the equation, including state symbols, for the process which represents cond ionisation energy of aluminium.	s the
			(1)
(d)	Sta Al.	ate and explain the trend in the melting points of the Period 3 metals Na,	Mg and
		nd	
		planation	
			(3) (Total 9 marks)
	(a)	(i) Describe the bonding in a metal.	

Q3.

	(ii)	Explain why magnesium has a higher melting point than sodium.	
			(4)
(b)	Why	do diamond and graphite both have high melting points?	
			(0)
			(3)
(0)	Why	is graphite a good conductor of electricity?	
(c)	vviiy	is graphite a good conductor of electricity?	
			(1)
(d)	Why	is graphite soft?	
			(2) (Total 10 marks)

Q4.Which one of the following does **not** contain any delocalised electrons?

- **A** poly(propene)
- **B** benzene
- **C** graphite
- **D** sodium

(Total 1 mark)